
- •Кафедра теории вероятностей и математической статистики
- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Независимость событий и условная вероятность. Построение моделей.
- •Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Определение случайной величины
- •Распределения случайных величин и векторов
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Закон больших чисел в форме Бернулли
- •Предельные теоремы теории вероятностей
- •Закон больших чисел в форме Чебышева
- •Определение условного распределения и условной плотности Условное распределение
Пуассоновское распределение - теорема Пуассона
Пусть
некоторый параметр.
Распределение на пространстве неотрицательных целых чисел называется пуассоновское распределение (распределение Пуассона), если
Распределение Пуассона является предельным случаем биномиального распределения при специальном поведении параметров (n,p) биномиального распределения Это будет показано в дальнейшем. Заметим, что биномиальное распределение можно рассматривать как распределение на пространстве неотрицательных целых чисел, положив
Определим на сигма-алгебре всех подмножеств неотрицательных целых чисел две вероятности P и Pn ,, соответствующие пуассоновскому и биномиальному распределениям :
Теорема Пуассона.
Пусть параметры биномиального распределения изменяются следующим образом
Тогда
т.е. биномиальная вероятность стремится к пуассоновской вероятности.
Доказательство.
Действительно, сгруппировав множители входящие в pk,n следующим образом
получим
Доказательство завершено.
При больших k рассчитать пуассоновскую вероятность гораздо легче, биномиальную. Пуассоновское распределение используется для приближения биномиального распределения в тех случаях, когда количество испытаний в схеме Бернулли велико, а вероятность успеха мала.
Независимость событий и условная вероятность. Построение моделей.
При построении дискретных вероятностных моделей достаточно определить распределение на множестве элементарных исходов. Для того, чтобы определить вероятность элементарного исхода часто используют понятие независимости и понятие условной вероятности.
Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
Данный пример показывает, что существуют попарно независимые события , которые не являются независимыми в совокупности.
Рассмотрим тетраэдр, грани которого покрашены в три цвета следующим образом:
1 грань – синяя
2 грань – зеленая
3 грань – желтая
4 грань разделена на три сектора – синий, зеленый и желтый.
Опыт состоит в бросании тетраэдра и наблюдении цвета выпавшей (нижней) грани.
Обозначим события
A – на грани есть синий цвет
B – на грани есть зеленый цвет
C – на грани есть желтый цвет
Тогда, используя симетричность тетраэдра и классическую вероятностную модель получим:
Для исключения неоднозначности при интерпретации понятия независимости в теории вероятностей при построении моделей используется, в основном, независимость в совокупности, как более сильная. В дальнейшем говоря о независимости мы, если не указано противное, будем подразумевать независимость в совокупности.
Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
Во многих практических задачах априори ясно, что некоторые случайные события в эксперименте независимы. Естественно требовать, чтобы эти же события были независимы и в математической модели, описывающей данный эксперимент. Определение независимости в теории вероятностей имеет аналитический характер и, следовательно, требование независимости событий в модели, приводит к ограничениям на используемую вероятность. Эти ограничения вместе с дополнительными качественными (симметричность) или количественными требованиями часто позволяют однозначно определить подходящую вероятность.
Рассмотрим, например, эксперимент, описываемый элементарным исходом вида
где первая координата описывает одну случайную компоненту, а вторая другую случайную компоненту опыта.
Если предположить N1 вариантов у первой компоненты и N2 – у второй, то для того, чтобы задать вероятность, необходимо в общем случае N1*N2 –1 вероятностей элементарных исходов (столько, сколько всего пар минус одна – мы знаем , что сумма всех вероятностей пар должна быть равна 1).
Если заранее известно, что компоненты независимы, то количество вероятностей событий, которые мы должны задать , чтобы однозначно определить вероятность, уменьшается до N1 +N2 –2 (N1 –1 на первую и N2 –1 на вторую компоненту). Далее, вероятность элементарного исхода определяется как произведение вероятностей значений его компонент.
Подобный прием мы использовали при построении моделей для схемы Бернулли и мультиномиальной схемы.
В общем случае пусть элементарный исход некоторого эксперимента представляется в виде вектора с n координатами.
Пусть известно, что координаты вектора описывают независимые компоненты, т.е. все события вида
должны быть независимы. Тогда, если для описания i-той компоненты использовать вероятностное пространство
с соответствующими распределениями
то для описания всего эксперимента естественно использовать следующее вероятностное пространство
где
т.е.
т.е. сигма-алгебра, содержащая все события, описывающие поведение компонент.
Распределение в результирующем пространстве определяется по формуле
Так построенное вероятностное пространство называется произведением вероятностных пространств
а его составляющие, соответственно, произведениями пространств элементарных исходов, произведением сигма-алгебр и произведением вероятностных мер.