
- •1. Вводная работа 3
- •2. Решение уравнений 6
- •3. Решение систем линейных алгебраических уравнений 11
- •Вводная работа по овладению основными навыками работы в системе Mathematica
- •Основные вопросы
- •2. Решение уравнений
- •Теоретические сведения
- •Варианты заданий
- •3. Решение систем линейных алгебраических уравнений
- •Теоретические сведения
- •Варианты заданий
-
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«МАТИ» - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ
УНИВЕРСТИТЕТ им. К.Э.ЦИОЛКОВСКОГО
Кафедра «Информационные технологии»
Лабораторные работы
по дисциплине
"Вычислительная математика"
Курс третий
Семестр пятый
Составил к.т.н., доцент Калинин Б.Н.
Москва – 2012 г
Cодержание
1. Вводная работа 3
Основные вопросы 3
2. Решение уравнений 6
Теоретические сведения 6
Варианты заданий 9
3. Решение систем линейных алгебраических уравнений 11
Теоретические сведения 11
Варианты заданий 14
Вводная работа по овладению основными навыками работы в системе Mathematica
Задание: В среде Mathematica напечатать приведенный ниже текст, запустить на счет и разобраться в полученных результатах.
Для получения зачета нужно уметь объяснить, как выполняется каждая команда. Описание команд содержится в Краткой инструкции пользователя пакета прикладных программ Mathematica.
Заголовок работы: “Лабораторная работа студента группы №, Ф. И.”.
Замечание 1. Комментарии выделяются скобкам и звездочками: (*…*). Для того, чтобы сделать комментариями всю выделенную ячейку, достаточно нажать на клавиши Alt+n, где n=1,…,7.
Замечание 2. Все вводимые выражения автоматически помещаются в ячейки. Отсутствие разделительного знака между выражениями означает, что эти выражения должны быть помещены в разные ячейки. Следовательно, перед вводом второго из пары таких выражений нужно открыть новую ячейку.
Основные вопросы
Основные части пакета Математика.
Точные и приближенные вычисления.
Операции с ячейками: объединение и разделение ячеек, группирование ячеек. Скрытие содержания группы ячеек.
Правила написания. Малые и большие буквы. Запись операции умножения. Употребление скобок.
Наиболее часто употребляемые операции и функции. Тригонометрические функции. Экспоненциальная функция и логарифм. Вычисление пределов. Вычисление производных. Численное и аналитическое интегрирование. Нахождение минимумов и максимумов. Циклические операции суммирования и умножения. Функция Fit. Функция Print. Получение информации о функциях.
Стандартная, префиксная и постфиксная формы обращения к функциям.
Циклические операции: For, While и Do. Логические операторы. Функция If.
Функции пользователя. Операции немедленного и задержанного присваивания. Шаблоны для описания типов аргументов.
Простейшие программы. Конструкция Module.
Понятие списка. Простой способ определения списка. Функции Range и Table. Операции с элементами списков. Определение векторной функции. Матричные функции.
Графики. Создание двумерного графика Plot. Основные опции графиков. Установление одинакового масштаба по осям координат. Другие типы графиков: ListPlot, параметрические графики, трехмерные графики. Функция Show. Массив графиков.
Решение уравнений. Функции: Solve, LinearSolve, Roots, FindRoot.
Преобразование выражений. Представление выражений в форме FullForm. Операции с элементами выражений. Операции с заголовками выражений.
Оператор Outer.
2. Решение уравнений
Найти
решение уравнения с точностью
следующими методами:
- дихотомии,
- пропорциональных частей (хорд),
- касательных (Ньютона),
- модифицированным методом Ньютона,
- комбинированным методом,
- итерационным, -
предварительно отделив корни.
Сравнить скорость сходимости методов.
Сравнить полученные результаты с результатами, вычисленными с помощью встроенных функций пакета Математика.
Для получения зачета студент должен продемонстрировать на экране компьютера действующую программу, реализующую перечисленные выше методы решения. Студент должен обосновать выбор отрезка для поиска решения уравнения, а также должен уметь объяснить все детали представленной программы и ответить на связанные с темой теоретические вопросы.