
- •Часть 3
- •Содержание
- •Пояснительная записка
- •Каждое задание включает в себя:
- •Рекомендации по работе с учебно-методическим пособием
- •Рекомендации по выполнению разных видов
- •Как самостоятельно изучить теоретический материал
- •Как составить обобщающую таблицу по теме
- •3. Как решать задачи (методика д. Пойа)
- •4. Как подготовить доклад
- •Доклад на тему «_______________________» Дисциплина: Элементы высшей математики Выполнил: студент группы ___
- •5. Как создать презентацию
- •Задания для самостоятельной работы
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 38. Применение необходимого признака сходимости и свойств рядов – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 39. Исследование сходимости числовых положительных рядов – 3 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 40. Исследование абсолютной и условной сходимости знакочередующихся рядов – 2 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 41. Нахождение радиуса и интервала сходимости степенного ряда – 1 ч.
- •Памятник учёному
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 42. Разложение функций в ряд Маклорена – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.6. Теория рядов Задание 43. Систематизация знаний по теме «Ряды» – 1ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 44. Задачи, решаемые с помощью дифференциальных уравнений – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 45. Решение дифференциальных уравнений с разделёнными и разделяющимися переменными – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 46. Решение однородных дифференциальных уравнений – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 47. Решение линейных дифференциальных уравнений – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 48. Решение дифференциальных уравнений 1-го порядка – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 49. Решение дифференциальных уравнений второго порядка – 1 ч.
- •Решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами
- •Раздел 3. Основы математического анализа
- •Тема 3.7. Обыкновенные дифференциальные уравнения Задание 50. Виды дифференциальных уравнений и методы их решения – 1 ч.
- •Раздел 4. Основы теории комплексных чисел
- •Тема 4.1. Формы комплексных чисел Задание 51. Действия над комплексными числами в алгебраической форме. Решение квадратных уравнений – 1 ч.
- •Пример 1. Для комплексных чисел и найдите: а) ; б) ; в) .
- •Пример 3. Решите уравнение: .
- •Раздел 4. Основы теории комплексных чисел
- •Тема 4.1. Формы комплексных чисел Задание 52. Действия над комплексными числами в тригонометрической форме – 1 ч.
- •Пример 1. Изобразите на комплексной плоскости числа: , , .
- •Пример 2. Для комплексных чисел , найдите: а) ; б) ; в) ; г) .
- •Раздел 4. Основы теории комплексных чисел
- •Тема 4.1. Формы комплексных чисел Задание 53. Действия над комплексными числами в показательной форме – 1 ч.
- •Раздел 4. Основы теории комплексных чисел
- •Тема 4.1. Переход между различными формами комплексных чисел Задание 54. Переход от алгебраической формы к тригонометрической и показательной и обратно – 2 ч.
- •Раздел 5. Использование пакетов прикладных программ при решении задач высшей математики
- •Критерии оценки выполнения самостоятельной внеаудиторной работы
- •Список рекомендуемой литературы
Каждое задание включает в себя:
название раздела (в соответствии с рабочей программой);
название темы;
цель выполнения работы;
формулировку заданий для самостоятельной внеаудиторной работы:
- задания, предполагающие актуализацию теоретических знаний;
- задания для письменного решения;
- дополнительные задания повышенного уровня сложности;
- интересные задания, направленные на развитие познавательной активности студентов посредством открытия фактов из истории жизни и деятельности творцов науки;
методические указания по выполнению работы;
список литературы.
Хочется верить, что данное пособие поможет студентам в правильной организации их самостоятельной работы, даст возможность получить прочные и глубокие знания, добиться хорошо сформированных умений по дисциплине «Элементы высшей математики», а главное - может послужить ступенькой к их дальнейшему самосовершенствованию и творческой самореализации.
Рекомендации по работе с учебно-методическим пособием
Уважаемые студенты!
Прежде чем приступить к выполнению заданий, прочтите рекомендации по работе с данным учебно-методическим пособием.
Главное, чему Вы должны научиться при изучении математики – умению мыслить, анализировать, рассуждать, и, конечно же, решать задачи.
Каждая задача по математике – особенная, и нужно постараться найти путь, ключ к ее решению.
Последовательно выполняя задания из предложенного пособия, Вы освоите материал важных разделов математического анализа, без знания которых невозможно стать специалистом в области современных компьютерных технологий.
Н
е
торопитесь сразу же решать задачи,
заданные преподавателем!
Внимательно изучите теоретический материал!
Такие задания в пособии обозначены символом .
З
атем
постарайтесь самостоятельно решить
задачи.
Не забудьте выписать исходные данные, решение, ответ.
Задания для письменного решения обозначены в пособии символом ,
а задачи с интересной формулировкой – символом .
Если Вы никак не можете отыскать ключ к решению задачи, внимательно прочтите
методические указания по выполнению работы. В них вы найдете:
основные правила, формулы, теоремы;
указания, как решать задачи данного типа;
разобранные примеры решения ключевых задач.
Если Вас заинтересовала эта тема, Вы хотите испытать себя и решить более сложные задачи, то попробуйте решить задачи, обозначенные символом . Техники и приёмы решения подобных задач могут с успехом быть Вами использованы при подготовке к олимпиадам по Вашей специальности.
Если Вы хотите узнать о критериях оценки, которые поставит Вам преподаватель за выполненную работу, обратитесь к критериям оценки (стр. 57)
Помните, что работа должна быть выполнена к следующему занятию по дисциплине!
Успехов Вам!!!
Если знания, полученные на занятии, не кажутся Вам исчерпывающими, обратитесь
к списку рекомендуемой литературы (стр. 58).
Рекомендации по выполнению разных видов
САМОСТОЯТЕЛЬНОЙ РАБОТЫ
Как самостоятельно изучить теоретический материал
Прежде чем приступать к решению задач, необходимо внимательно изучить теоретический материал учебника или конспект лекции.
Советуем Вам соблюдать следующие правила:
Правило 1. Внимательно прочтите материал несколько раз. Это не займет много времени, но совершенно необходимо, так как, какими бы большими математическими способностями ни обладал человек, после одного - двух прочтений нового материала обычно невозможно полноценно усвоить его содержание.
При первом прочтении нужно ставить цель - понять, а не запомнить. Обычно для достижения хорошего понимания материала одного прочтения мало. К тому же часто приходится, полистав книгу или конспект лекций, припомнить кое-что из ранее изученного.
А для того, чтобы хорошо запомнить главное (основные утверждения, формулы и т.п.) необходимо второе, а иногда и третье прочтение.
Правило 2. Повторите по памяти формулировку основных правил, понятий, теорем из изученного параграфа. Только тогда вы приобретете знания, ради которых изучается курс.
Правило 3. Разберите типовые примеры и решение ключевых задач по данной теме. Тогда Вы поймете, как усвоенные теоретические знания могут применяться в различных ситуациях.
Правило 4. Ответьте на контрольные вопросы, не заглядывая в книгу или в тетрадь. Обычно контрольные вопросы приведены в конце каждого параграфа учебника. Попробуйте оценить свои знания, сравнив свой ответ с текстом книги или конспекта лекции.
Правило 5. Самостоятельно решите предложенные задачи по данной теме.
Только при выполнении всех этих правил Вы можете быть уверены, что теоретический материал по данной теме Вами усвоен.