
- •Часть 2
- •Содержание
- •Пояснительная записка
- •Каждое задание включает в себя:
- •Рекомендации по выполнению разных видов
- •Как самостоятельно изучить теоретический материал
- •2. Как решать задачи (методика д. Пойа)
- •3. Как выполнить домашнюю контрольную работу
- •Задания для самостоятельной работы
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 22. Нахождение неопределённых интегралов методом непосредственного интегрирования – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 23. Нахождение неопределённых интегралов методом подстановки – 2 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 24. Нахождение неопределённых интегралов методом по частям – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 25. Решение задач на применение методов интегрирования в неопределенном интеграле – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 26. Нахождение определённых интегралов методом непосредственного интегрирования – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 27. Нахождение определённых интегралов методом подстановки – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 28. Нахождение определённых интегралов методом по частям – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 29. Нахождение определённых интегралов различными методами – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 30. Приложения определённого интеграла – 2 ч.
- •Виды фигур, площадь которых находится с помощью определенного интеграла
- •Раздел 3. Основы математического анализа
- •Тема 3.3. Интегральное исчисление функции одной действительной переменной Задание 31. Нахождение несобственных интегралов – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.4. Дифференциальное исчисление функции нескольких действительных переменных Задание 32. Построение поверхности - графика функции двух переменных - в программе Microsoft Excel – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.4. Дифференциальное исчисление функции нескольких действительных переменных Задание 33. Нахождение частных производных функции двух переменных – 2 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.4. Дифференциальное исчисление функции нескольких действительных переменных Задание 34. Нахождение частных производных второго порядка функции двух переменных – 1 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.5. Интегральное исчисление функции нескольких действительных переменных Задание 35. Нахождение повторных интегралов – 1 ч.
- •Петер Дирихле (1805-1859)
- •Раздел 3. Основы математического анализа
- •Тема 3.5. Интегральное исчисление функции нескольких действительных переменных Задание 36. Нахождение двойных интегралов по прямоугольной области и произвольной области 1 типа – 2 ч.
- •Раздел 3. Основы математического анализа
- •Тема 3.5. Интегральное исчисление функции нескольких действительных переменных Задание 37. Приложения двойных интегралов в геометрии – 2 ч.
- •Критерии оценки выполнения самостоятельной внеаудиторной работы
- •Список рекомендуемой литературы
2. Как решать задачи (методика д. Пойа)
Понимание постановки задачи |
|
Нужно ясно понять задачу |
Внимательно прочтите условие задачи. Четко определите для себя, что дано в условии задачи, а что требуется найти. Спросите себя, что означают понятия, о которых идет речь в задаче. И ответьте себе. Если же ответить сразу не удается, то ответ надо поискать, например, в теоретической части курса. Иначе для Вас задача может оказаться неразрешимой. |
Составление плана решения |
|
Нужно найти связь между данными и неизвестными. В конечном итоге нужно перейти к плану решения. |
Ответьте на вопрос: как взаимосвязаны понятия в задаче? Именно благодаря взаимосвязи понятий задачу удается решить. Чаще всего такие взаимосвязи предстают в виде формул, формулировок теорем, а некоторые из них задаются формулировкой задачи. Знаете ли Вы теорему (теоремы), формулы, которые помогут в решении? Известна ли Вам похожая задача? Нельзя ли использовать метод ее решения? Все ли данные нами были использованы? Приняты ли во внимание все существенные понятия, содержащиеся в задаче? |
Осуществление плана |
|
Нужно осуществить план решения |
Осуществляя план решения, контролируйте каждый свой шаг. Ясно ли вам, что предпринятый вами шаг правилен? Сумеете ли вы доказать, что он правильный? |
Взгляд назад (изучение полученного решения) |
|
Нужно изучить найденное решение |
Нельзя ли проверить найденный результат? Нельзя ли проверить ход решения? Нельзя ли получить тот же результат иначе? Нельзя ли увидеть его сразу? |
Помните! Вы должны не только решить задачу, но и грамотно оформить ее решение.
Оформление решения задачи включает в себя:
запись исходных данных;
что требуется найти по условию задачи;
собственно решение задачи с указанием используемых формул и теорем;
запись ответа.
3. Как выполнить домашнюю контрольную работу
Ознакомьтесь с темой работы.
Прочитайте цели выполнения работы.
Внимательно изучите задание (обратите внимание на номер своего варианта). Все ли понятия, о которых идет речь в задании, Вам известны? Если нет, то обратитесь к лекциям, учебнику или изучите материал, предлагаемый в указаниях по решению работы.
Ознакомьтесь с пояснениями к решению работы.
Приступите к выполнению расчетов (опираясь на приведенные формулы или алгоритмы).
Проанализируйте полученные результаты: нет ли противоречий с теорией? Проверьте правильность проведенных вычислений.
Оформите отчет о выполнении домашней контрольной работы в тетради для практических работ по следующему образцу:
Домашняя контрольная работа.
Тема «_____________________________________________»
Вариант №__.
Цель работы: _______________________________________________________________________
1. Исходные данные.
2. Основная часть, выполнение чертежей и расчётов.
3. Ответ.