
- •Пособие по аналитической химии
- •Часть 1
- •Предисловие
- •Введение Аналитическая химия, ее задачи и значение
- •Чувствительность, специфичность и избирательность аналитических реакций
- •Глава I. Растворы. Способы выражения концентрации веществ в растворах
- •1.1. Общая характеристика растворов
- •1.2. Способы выражения состава раствора и концентрации растворенного вещества
- •1.3. Решение типовых задач
- •1.4. Задачи для самостоятельного решения
- •Глава II. Химическое равновесие в растворах слабых и сильных электролитов
- •Ионная сила раствора. Активность. Коэффициенты активности
- •2.2. Закон действующих масс. Химическое равновесие. Термодинамическая и концентрационная константы равновесия
- •2.3. Константа и степень ионизации слабых электролитов. Взаимосвязь между ними
- •2.4. Ионизация воды. Водородный показатель рН
- •2.5. Вычисления концентрации ионов водорода и рН в водных растворах слабых электролитов (кислот и оснований)
- •2.6. Вычисления концентрации и активности ионов водорода и рН в растворах сильных электролитов
- •2.7. Решение типовых задач
- •2.8. Вопросы и задачи для самостоятельного решения
- •Глава III. Буферные системы
- •3.1. Общая характеристика буферных растворов
- •3.2. Равновесия в растворах слабых кислот в присутствии солей этих кислот
- •3.3. Равновесия в растворах слабых оснований в присутствии солей этих оснований
- •3.4. Сущность буферного действия. Буферная емкость
- •3.5. Значение буферных растворов в анализе
- •3.6. Решение типовых задач
- •3.7. Вопросы и задачи для самостоятельного решения
- •Глава IV. Равновесия в растворах гидролизующихся солей
- •4.1. Механизм гидролиза солей
- •4.2. Гидролиз по катиону
- •4.3. Гидролиз по аниону
- •4.4. Гидролиз по катиону и аниону
- •4.5. Необратимый гидролиз
- •4.6. Расчет константы гидролиза, степени гидролиза и рН растворов гидролизующихся солей
- •А) Гидролиз по катиону
- •Б) Гидролиз по аниону
- •В) Гидролиз по катиону и аниону
- •Выводы:
- •4.7. Вычисление ступенчатых констант гидролиза солей слабых двухосновных кислот
- •4.8. Факторы, влияющие на степень гидролиза солей
- •4.9. Использование реакций гидролиза в качественном анализе
- •4.10. Решение типовых задач
- •4.11. Вопросы и задачи для самостоятельного решения
- •Глава V. Химическое равновесие в гетерогенных системах
- •5.1. Использование процессов образования и растворения осадков в анализе
- •5.2. Равновесие в системах осадок раствор. Произведение растворимости. Константа растворимости
- •5.3. Факторы, влияющие на растворимость осадков
- •5.4. Влияние избытка осадителя на полноту осаждения
- •5.5. Образование и растворение осадков
- •5.6. Влияние на растворимость осадка других сильных электролитов. Солевой эффект
- •5.7. Решение типовых задач Вычисление растворимости (р) по произведению растворимости (пр)
- •Вычисление произведения растворимости по растворимости
- •Образование и растворение осадков
- •Влияние одноименных ионов на растворимость малорастворимых электролитов
- •Солевой эффект
- •5.8. Вопросы и задачи для самостоятельного решения
- •Глава VI. Комплексообразование в аналитической химии
- •6.1. Комплексные соединения, их состав и строение
- •6.2. Номенклатура комплексных соединений
- •6.3. Диссоциация комплексных соединений. Константа нестойкости
- •6.4. Решение типовых задач
- •3 103 Моль/л.
- •6.5. Использование реакций комплексообразования в анализе
- •6.6. Органические реагенты в анализе
- •6.7. Вопросы, упражнения и задачи для самостоятельной работы
- •Глава VII. Окислительно-восстановительные процессы
- •7.1. Классификация окислительно-восстановительных реакций
- •7.2. Составление уравнений окислительно-восстановительных реакций
- •7.3. Использование реакций окисления-восстановления в анализе
- •7.4. Нормальные окислительно–восстановительные потенциалы. Уравнение Нернста
- •7.5. Равновесие в окислительно-восстановительных процессах. Константа равновесия
- •7.6. Решение типовых задач
- •7.7. Вопросы и задачи для самостоятельного решения
- •Приложение
- •Использованная литература
- •Оглавление
- •Глава I. Растворы. Способы выражения концентрации веществ в растворах 9
- •Глава II. Химическое равновесие в растворах слабых и сильных электролитов 21
- •Глава III. Буферные системы 37
- •Глава IV. Равновесия в растворах гидролизующихся солей 47
- •Глава V. Химическое равновесие в гетерогенных системах 70
- •Глава VI. Комплексообразование в 89
- •Глава VII. Окислительно-восстановительные процессы 110
- •302026, Г. Орел ул Комсомольская , 95.
5.2. Равновесие в системах осадок раствор. Произведение растворимости. Константа растворимости
При аналитических исследованиях очень важно знать последовательность осаждения ионов из раствора, полноту осаждения, растворимость осадков, условия образования осадков, условия переведения того или иного вещества в другие малорастворимые электролиты или в раствор.
Абсолютно нерастворимых веществ в природе не существует. В насыщенном растворе между осадком и раствором над ним устанавливается динамическое равновесие:
KtAn↓ ↔ Kt+ + An- (насыщенный раствор)
Для бинарного электролита согласно закону действующих масс, учитывая, что поверхность осадка постоянна, можно записать:
(V.I)
ПРа(Кsо) – произведение растворимости – важнейшая аналитическая константа, характеризующая основную закономерность равновесного процесса в системе осадок раствор, называемую правилом произведения растворимости: произведение активностей ионов малорастворимого электролита в его насыщенном водном растворе при постоянной температуре является постоянной величиной.
В общем случае для электролита типа KtmAnn с учетом стехиометрических коэффициентов для реакции:
KtmAnn↓ ↔ mKt+ + nAn-
произведение растворимости запишется:
Учитывая,
что
;
получаем:
(V.2)
Для малорастворимых соединений (Р<10-4 моль/л) и для бинарных электролитов (ПР≤10-8) в отсутствии других сильных электролитов ионная сила раствора (µ) мала, коэффициенты активности (fi) приближаются к 1, и для необходимых расчетов можно пользоваться упрощенным выражением:
По величине произведения растворимости можно судить о растворимости электролитов. Чем больше величина произведения растворимости, тем больше и растворимость данного соединения. Но делать выводы о большей или меньшей растворимости (в моль/л) веществ по величинам произведений растворимости можно только для однотипных электролитов.
Например,
сравнивая значения произведений
растворимости следующих веществ:
= 1,78·10-10;
=
1,1·10-10;
= 8,3·10-17;
= 9,1·10-6;
= 5,0·10-18,
можно расположить их по степени уменьшения
растворимости (в моль/л) в следующий
ряд:
Самая меньшая растворимость из приведенных соединений у сульфида железа.
Выбор наиболее чувствительных осадителей также можно осуществить по величинам произведений растворимости. Например, для решения вопроса, каким из анионов полнее можно осадить ион Ba2+, сравнивают произведения растворимости ряда соединений:
=1,1·10-10;
=
1,2·10-10;
=
5,1·10-9;
=
1,1·10-7.
В данном случае наиболее полное осаждение достигается при использовании ионов SO42-. Причем чувствительность ионов осадителей повышается в следующей последовательности:
C2O42- < CO32- < CrO42- < SO42-
Для
катионов кальция чувствительность тех
же анионов увеличивается в другой
последовательности: CrO42-
< SO42-
< CO32-
< C2O42-;
т.к.
=
9,1·10-6;
=
7,1·10-4;
=
4,8·10-9;
= 2,3·10-9.
Сравнивая произведения растворимости хроматов бария и кальция, можно увидеть, что после осаждения ионов Ва2+ в растворе останутся ионы кальция.