Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по математике БАТ-БАЭ-БМА-БАБ-12 (2 семе...docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.8 Mб
Скачать

Интегрирующий множитель

Пусть левая часть уравнения не есть полный дифференциал. Иногда удаётся подобрать такую функцию , после умножения на которую всех членов уравнения левая часть уравнения становится полным дифференциалом.

Общее решение полученного таким образом уравнения совпадает с общим решением первоначального уравнения; функция называется интегрирующим множителем данного уравнения.

Для того чтобы найти умножим обе части уравнении на неизыестный пока интегрирующий множитель :

Для того чтобы последнее уравнение было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось соотношение:

т.е. или . После деления обеих частей последнего уравнения на , получим:

.

Задача нахождения из последнего уравнения ещё труднее, чем первоначальная задача интегрирования данного уравнения. Только в некоторых частных случаях .

удаётся найти функцию

Пусть, например, данное уравнение допускает интегрирующий множитель, зависящий только от . Тогда

и для отыскания мы получаем обыкновенное дифференциальное уравнение

Откуда

Аналогично, если у данного уравнения существует интегрирующий множитель, зависящий только от , то он находится по формуле

Дифференциальные уравнения высших порядков

Дифференциальное уравнение го порядка имеет вид:

или, если его можно разрешить относительно ой производной,

Для этих уравнений имеет место теорема о существовании и единственности решения:

Если в уравнении функция и её частные производные по аргументам непрерывны в некоторой области, содержащей значения то существует и притом единственное решение уравнения, удовлетворяющее условиям

Эти условия называются начальными условиями.

Общим решением дифференциального уравнения го порядка называется функция зависящая от произвольных постоянных и такая, что:

  1. она удовлетворяет уравнению при любых значениях постоянных ;

  2. при заданных начальных условиях

постоянные можно подобрать так, что функция будет удовлетворять этим условиям.

Всякая функция, получающаяся из общего решения при конкретных значениях постоянных , называется частным решением.

Уравнения вида

Простейшим уравнением го порядка является уравнение вида . Такие уравнения решаются путём интегрирования левой и правой части раз.

. . . . . . . . . . .

Уравнения второго порядка, приводящиеся к уравнениям первого порядка

  1. Уравнения вида , не содержащие явным образом искомой функции , приводятся к уравнениям первого порядка с помощью подстановки где . Тогда и данное уравнение примет вид - уравнение первого порядка.

  2. Уравнения вида , не содержащие явным образом независимую переменную , приводятся к уравнениям первого порядка с помощью подстановки где , но , следовательно . Тогда и данное уравнение примет вид - уравнение первого порядка.