
- •Учебное пособие
- •Isbn 5-89644-078-2
- •1 Лава 1
- •1 Лава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Г лава 1
- •В техносфере
- •1.1. Техносфера. Техника. Техническая система. Технология
- •Г лава 1
- •1.2. Определение опасности
- •Г лава 1
- •1.3. Аксиомы о потенциальной опасности технических систем
- •Г лава 1
- •1.4. Таксономия опасностей
- •Г лава 1
- •Г лава 1
- •1.4.1. Примеры таксономий
- •Г лава 1
- •Г лава 1
- •Г лава 1
- •Г лава 1
- •1.5. Алгоритм развития опасности и ее реализации
- •Г лава 1
- •1.6. Источники опасности
- •Г лава 1
- •1.7. Энергоэнтропийная концепция опасностей
- •1.8. Номенклатура опасностей
- •Г лава 1
- •1.9. Квантификация опасностей
- •1.10. Идентификация опасностей
- •Г лава 1
- •1.11. Причины и последствия
- •1.12. Пороговый уровень опасности
- •Г лава 1
- •1.13. Показатели безопасности технических систем
- •Г лава 2 Основные положения теории риска
- •2.1. Понятие риска
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.2. Развитие риска на промышленных объектах
- •Г лава 2
- •2.3. Основы методологии анализа и управления риском
- •2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
- •Г лава 2
- •Г лава 2
- •2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
- •Г лава 2
- •2.3.4. Общность и различие процедур оценки и управления риском
- •2.3.5. Количественные показатели риска
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.3.6. Приемлемый риск
- •2, 3, 4, 5 — Зона соответственно
- •Г лава 2
- •Г лава 2
- •2.3.7. Сравнение рисков
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.3.8. Системно-динамический подход к оценке техногенного риска
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.4. Моделирование риска
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •Г лава 2
- •2.5. Принципы построения информационных технологий управления риском
- •Г лава 2
- •Г лава 2
- •Г лава 3
- •3.1. Общие замечания
- •Г лава 3
- •Г лава 3
- •3.2. Классификация внешних воздействующих факторов
- •Г лава 3
- •Г лава 3
- •Г лава 3
- •Г лава 3
- •3.3. Воздействие температуры
- •Г лава 3
- •Г лава 3
- •Г лава 3
- •3.4. Воздействие солнечной радиации
- •Г лава 3
- •3.5. Воздействие влажности
- •Г лава 3
- •3.6. Воздействие атмосферного давления
- •3.7. Воздействие ветра и гололеда
- •Г лава 3
- •3.8. Воздействие примесей воздуха
- •Г лава 3
- •3.9. Воздействие биологических факторов
- •3.10. Старение материалов
- •Г лава 3
- •Г лава 3
- •3.11. Факторы нагрузки
- •Г лава 3
- •Г лава 4
- •Г лава 4
- •4.1. Основные понятия теории надежности
- •4.1.1. Предварительные замечания
- •4.1.2. Объект, элемент, система
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •4.1.3. Определение надежности
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •4.1.4. Виды надежности
- •4.1.5. Характеристики отказов
- •Г лава 4
- •Г лава 4
- •4.1.6. Виды отказов и причинные связи
- •Г лава 4
- •Г лава 4
- •4.2. Количественные характеристики надежности
- •4.2.1. Критерии и количественные характеристики надежности
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •4.3. Теоретические законы распределения отказов
- •4.3.1. Случайное событие
- •4.3.2. Случайная величина
- •4.3.3. Основные законы распределения, используемые в теории надежности
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •4.3.4. О выборе закона распределения отказов при расчете надежности
- •4.4. Резервирование
- •Г лава 4
- •4.4.1. Виды резервирования
- •4.4.2. Способы структурного резервирования
- •Г лава 4
- •4.5. Основы расчета надежности технических систем по надежности их элементов
- •4.5.1. Целевое назначение и классификация методов расчета
- •Г лава 4
- •4.5.2. Последовательность расчета систем
- •Г лава 4
- •4.5.3. Расчет надежности, основанный на использовании параллельно-последовательных структур
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 4
- •Г лава 5
- •5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
- •Г лава 5
- •Г лава 5
- •Г лава 5
- •Г лава 5
- •5.2. Выявление основных опасностей на ранних стадиях проектирования
- •Г лава 5
- •5.3. Исследования в предпусковой период
- •5.4. Исследования действующих систем
- •Г лава 5
- •5.5. Регистрация результатов исследования
- •Г лава 5
- •5.6. Содержание информационного отчета по безопасности процесса
- •5.6.1. Описание промышленной системы
- •5.6.2. Описание производственных процессов
- •Г лава 5
- •5.6.3. Описание опасных веществ
- •5.6.4. Предварительный анализ опасностей
- •5.6.5. Описание элементов системы безопасности
- •Г лава 5
- •5.6.6. Оценка возможности развития опасностей
- •5.6.7. Организация
- •Г лава 5
- •5.6.8. Оценка последствий крупных производственных аварий
- •5.6.9. Планирование мер смягчения последствий аварий
- •Г лава 5
- •5.6.10. Отчеты перед местными органами власти
- •Г лава 5
- •Г лава 6
- •Технических систем
- •6.1. Понятие и методология качественного и количественного анализов опасностей и выявления отказов систем
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
- •Г лава 6
- •6.3. Предварительный анализ опасностей
- •Г лава 6
- •Г лава 6
- •6.4. Метод анализа опасности и работоспособности– аор (Hazard and Operability Study — hazop)
- •Г лава 6
- •Г лава 6 Пример простой технологической карты
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.5. Методы проверочного листа (Check-list) и «Что будет, если ...?» («What — If»)
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.6. Анализ вида и последствий отказа – авпо (Failure Mode and Effects Analysis — fmea)
- •Г лава 6
- •6.7. Анализ вида, последствий и критичности отказа — авпко (Failure Mode, Effects and Critical Analysis — fmeca)
- •Г лава 6
- •Г лава 6
- •6.8. Дерево отказов – до (Fault Tree Analysis — fta)
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.9. Дерево событий – дс (Event Tree Analysis — еta)
- •Г лава 6
- •Г лава 6
- •6.10. Дерево решений
- •6.11. Логический анализ
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.12. Контрольные карты процессов
- •Г лава 6
- •Г лава 6
- •6.13. Распознавание образов
- •Г лава 6
- •Г лава 6
- •Г лава 6
- •6.14. Таблицы состояний и аварийных сочетаний
- •Г лава 6
- •Г лава 6
- •Г лава 7
- •7.1. Причины совершения ошибок
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •Г лава 7
- •7.2. Методология прогнозирования ошибок
- •Г лава 7
- •Г лава 7
- •7.3. Принципы формирования баз об ошибках человека
- •Г лава 7
- •Г лава 8
- •8.1. Причины, задачи и содержание экспертизы
- •Г лава 8
- •8.2. Организация экспертизы
- •Г лава 8
- •Г лава 8
- •8.3. Подбор экспертов
- •Г лава 8
- •Г лава 8
- •8.4. Экспертные оценки
- •Г лава 8
- •Г лава 8
- •8.5. Опрос экспертов
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •8.6. Оценка согласованности суждений экспертов
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •Г лава 8
- •8.7. Групповая оценка и выбор предпочтительного решения
- •Г лава 8
- •Г лава 8
- •8.8. Принятие решения
- •Г лава 8
- •Г лава 8
- •8.9. Работа на завершающем этапе
- •Г лава 8
- •Г лава 9
- •9.1. Стадия проектирования технических систем
- •Г лава 9
- •9.2. Стадия изготовления технических систем
- •9.3. Стадия эксплуатации технических систем
- •Г лава 9
- •9.4. Техническая поддержка и обеспечение
- •Г лава 9
- •9.5. Технические средства обеспечения надежности и безопасности технических систем
- •9.5.1. Средства предупреждения отказов
- •Г лава 9
- •9.5.2. Средства контроля
- •9.5.3. Средства защиты
- •Г лава 9
- •Г лава 9
- •9.6. Организационно-управленческие мероприятия
- •9.6.1. Техническое обслуживание, ремонтные работы и инспектирование
- •Г лава 9
- •Г лава 9
- •9.6.2. Управление изменениями в технологическом процессе
- •9.6.3. Обучение
- •Г лава 9
- •9.7. Диагностика нарушений и аварийных ситуаций в технических системах
- •Г лава 9
- •Г лава 9
- •Г лава 9
- •Г лава 9
- •Г лава 9
- •9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
- •Глава 10 Технические системы безопасности
- •10.1. Назначение и принципы работы защитных систем
- •Глава 10
- •Глава 10
- •10.2. Типовые структуры и принципы функционирования автоматических систем защиты
- •Глава 10
- •Глава 10
- •Глава 10
- •Глава 10
- •Глава 10
- •10.3. Автоматическая интеллектуализированная система защиты объекта и управления уровнем безопасности
- •Глава 10
- •Глава 10
- •10.4. Типовые локальные технические системы и средства безопасности
- •Глава 10
- •10.4.1. Системы предотвращения отклонений от допустимых рабочих режимов
- •Глава 10
- •10.4.2. Системы, предотвращающие разрушение деталей и узлов систем безопасности
- •10.4.3. Системы энергоснабжения
- •10.4.4. Системы аварийной сигнализации
- •Глава 10
- •10.4.5. Защитная автоматика
- •10.4.6. Технические средства защиты
- •10.4.7. Способы предотвращения человеческих и организационных ошибок
- •Глава 10
- •Глава 11
- •Глава 11
- •Глава 11
- •11.1. Классификация промышленных объектов по степени опасности
- •11.2. Оценка опасности промышленного объекта
- •Глава 11
- •11.3. Декларация безопасности опасного промышленного объекта
- •11.4. Требования к размещению промышленного объекта
- •Глава 11
- •11.5. Система лицензирования
- •11.6. Экспертиза промышленной безопасности
- •11.7. Информирование государственных органов и общественности об опасностях и авариях
- •Глава 11
- •11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
- •11.9. Учет и расследование
- •Глава 11
- •11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
- •11.11. Государственный контроль и надзор за промышленной безопасностью
- •Глава 11
- •Глава 11
- •Глава 11
- •Глава 11
- •11.12. Разработка планов по ликвидации аварий
- •11.13. Экономические механизмы регулирования промышленной безопасности
- •Глава 11
- •11.14. Российское законодательство в области промышленной безопасности
- •Глава 11
- •Глава 11
- •Глава 11
- •Глава 12
- •12.1. Понятие ущерба и вреда. Структура вреда
- •Глава 12
- •12.2. Экономический и экологический вред
- •Глава 12
- •Глава 12
- •12.3. Принципы оценки экономического ущерба
- •Глава 12
- •Глава 12
- •Глава 12
- •Глава 12
- •Б иблиографический список
- •Б иблиографический список
- •Б иблиографический список
- •Б иблиографический список
- •Б иблиографический список
- •432980 Г. Ульяновск, ул. Гончарова, 14
- •Isbn 5-89644-078-2
Г лава 2
где: Sr — область интегрирования — площадь части города, в пре-
делах которой возможно поражение людей при авариях на заданном объекте;
\|/(х,у) — плотность размещения людей в окрестностях точки с координатами (х, у); P\D(x, у) ] — вероятность поражения людей от величины токсодозы в точке города с координатами (х, у) определяемая из параметрического закона поражения людей сильнодействующими ядовитыми веществами;
D(x,y) — токсодоза, определяемая при переменной во времени концентрации химически опасного вещества для точки с координатами (х, у) по формуле:
'&
D(x, у) = J Q(x, у, t)dt,
(2.4.7)
п
где: tn...tk — интервал времени;
Q(x, у, t) — концентрация химически опасного вещества в атмосфере для точки с координатами (х, у) в заданный момент времени t. По формуле (2.4.6) математическое ожидание потерь определяется для случая, когда исходные данные известны. При заблаговременном определении математического ожидания потерь необходимо учитывать изменчивость направления (и) и скорости ветра (v) в течение года. Тогда потери могут быть определены по формуле:
M(N) = JJ J J f(Q,V)PyD(x, j)Ji|/(x,y)dVdQdxdy, (2.4.8)
/(в, К)
иГmax
sr
sr 0 vmin
где: /(9, V) — функция плотности распределения направления 9
V
и скорости V ветра;
max
минимально и максимально возможные значения скорости ветра; область интегрирования. Остальные обозначения те же, что и в формуле (2.4.6). Учитывая выражение (2.4.8), оценка индивидуального риска на химиче-скиопасном объекте (ХОО) может проводиться по формуле:
тт 27Z V max
е =гм J J J ]J(V,Y)Flv(x,y)W(x,y)ayaidaxay, (2.4.9)
S r 0 vmin
где: H — вероятность аварии в течение года; TV — численность населения. Моделирование риска от аварий на радиационно опасных объектах.
Индивидуальный риск поражения людей в городе при аварии на рядом рас-
84
Г лава 2
положенном радиационноопасном объекте (РОО) может быть определен по формуле:
^"tV-MJ ]J(p,r)^JJ(x,y)ft(x,y)dva)dxdy, (2.4.10)
Sr 0 Fmin
где: P\D(x, у) ] — вероятность поражения людей от величины дозы радиоактивного заражения в точке с координатами (х, у) определяется из закона поражения людей; D(x, у) — доза радиоактивного заражения при переменном во времени уровне радиации для точки с координатами (х, у) определяется по отдельным методикам; \|/(х, у) — плотность размещения незащищенного населения в пределах элементарной площадки города с координатами (х, у). Комплексная оценка техногенного риска может быть реализована также по следующей математической модели.
Для оценки риска запроектной аварии, наряду с аналитическими методами, представляется возможным использование метода Монте-Карло — метода статистического моделирования. Идея этого метода чрезвычайно проста и состоит в следующем. Вместо того чтобы описывать случайный процесс с помощью аналитического аппарата, производится «розыгрыш» случайного явления с помощью последовательных операций, дающих случайный результат. Конкретное осуществление случайного процесса складывается каждый раз по-иному, поэтому в результате статистического моделирования (розыгрыша) возникает каждый раз новая, отличная от других, искусственная реализация этого процесса. При числе повторений (N > 100) метод дает статистически устойчивое сходство результата. При этом на основании перечисленных исходных данных формируется массив случайных значений величин.
Обобщенный алгоритм оценки риска методом статистического моделирования может состоять из следующих последовательных процедур:
Шаг 1. На основе равновероятного датчика случайных чисел разыгрывается время, число и месяц возникновения аварии.
Шаг 2. Исходя из реализованных временных характеристик аварий и с учетом вероятности распределения метеоусловий за большой период времени для данной местности прогнозируют конкретный вектор значений метеоусловий, включающий температуру воздуха и почвы, стратификацию атмосферы, скорость и направление ветра (при разработке статистической модели аварии не представляет труда учесть фактическую розу ветров для любой точки со случайным розыгрышем месяца, дня, времени аварии, конкретного направления и скорости ветра).
Шаг 3. На основе сформулированного перечня аварий и с учетом равновероятной природы их возникновения разыгрывается конкретный тип ава-
85