Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по Дискретной Математике.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
3.27 Mб
Скачать

6.6. Биномиальная формула (бином Ньютона).

Часто при решении комбинаторных задач используется биномиальная теорема (бином Ньютона).

Биномиальная теорема.

(6.14)

Доказательство.

Перемножим последовательно (a+b) n раз. Получим сумму 2n слагаемых вида d1d2...dn, где di (i=1,…,n) равно либо a, либо b. Разобьем все слагаемые на n+1 группу B0,B1,…,Bn, относя к группе Bk все те произведения, в которых b встречается множителем k раз, а an–k раз. Число элементов в Bk очевидно равно (таким числом способов среди n произведений d1d2...dn можно выбрать k сомножителей, равных b), а каждый элемент в Bk равен . Отсюда и получаем формулу (6.14).

Пример.

Используя биномиальную теорему, получить формулу для расчета и

Решение.

7. Нечеткие множества

7.1. Введение

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, № 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

7.2. Основные определения.

Подход к формализации понятия нечеткого множества состоит в обобщении понятия принадлежности. В обычной теории множеств существует несколько способов задания множества. Одним из них является задание с помощью характеристической функции, определяемой следующим образом.

Пусть — так называемое универсальное множество, из элементов которого образованы все остальные множества, рассматриваемые в данном классе задач, например множество всех целых чисел, множество всех гладких функций и т.д.

Характеристической функцией множества называется функция, значения которой указывают, является ли элементом множества :

(7.1)

(7.2)

Особенностью этой функции является бинарный характер ее значений.

С точки зрения характеристической функции, нечеткие множества есть естественное обобщение обычных множеств, когда мы отказываемся от бинарного характера этой функции и предполагаем, что она может принимать любые значения на отрезке .

В теории нечетких множеств характеристическая функция называется функцией принадлежности, а ее значение — степенью принадлежности элемента нечеткому множеству .

Нечетким множеством называется совокупность пар

(7.3)

Пример.

Пусть универсум , а множество задано

Тогда, очевидно, что элемент не принадлежит множеству , элемент принадлежит ему в малой степени, элемент более или менее принадлежит, элемент принадлежит в значительной степени, является элементом множества .

Пример.

Пусть универсум есть множество действительных чисел. Нечеткое множество , обозначающее множество чисел, близких к 10, можно задать следующей функцией принадлежности:

Рис. 7.1.

Показатель степени выбирается в зависимости от степени близости к 10. Так для описания множества чисел, очень близких к 10, можно положить ; для множества чисел, не очень далеких от 10, .

Для описания множеств, представляющих собой некоторые понятия или качества, вводится понятие лингвистической переменной. Лингвистическая переменная - это переменная, значениями которой являются не числа, а слова или предложения естественного (или формального) языка.

Пример

Лингвистическая переменная "возраст" может принимать следующие значения: "очень молодой", "молодой", "среднего возраста", "старый", "очень старый" и др. Ясно, что переменная "возраст" будет обычной переменной, если ее значения — точные числа; лингвистической она становится, будучи использованной в нечетких рассуждениях человека.

Каждому значению лингвистической переменной соответствует определенное нечеткое множество со своей функцией принадлежности. Так, лингвистическому значению "молодой" может соответствовать функция принадлежности, изображенная на рис. 7.2.

Рис. 7.2.