
- •Конспект лекций
- •1. Теория множеств.
- •1.1. Множества
- •1.1.1. Свойства подмножеств.
- •1.1.2 Операции над множествами.
- •1.1.3 Алгебра теории множеств.
- •1.1.4 Решение уравнений алгебры множеств.
- •1.2. Кортеж.
- •1.2.1 Проекция множества.
- •1.2.2 График и свойства графика
- •1 .2.3. Свойства графиков.
- •1.3. Соответствия и отношения
- •1.3.1. Прямое (декартовое) произведение множество.
- •1.3.2. Соответствия.
- •1.3.2.1. Свойства соответствий.
- •1.3.3. Отношения.
- •1 .3.3.1. Операции над отношениями.
- •1.3.3.2 Основные свойства отношений.
- •1.4. Решетки.
- •1.4.1 Диаграммы Хассе.
- •1.4.2 Алгебраическое представление решеток.
- •2. Математическая логика
- •2.1. Высказывания
- •2.1.1. Высказывания и операции над высказываниями.
- •2.1.2. Операции над высказываниями.
- •2.2. Формулы математической логики.
- •2.2.1. Формулы равносильности.
- •2.3. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •2.4. Различные формы представления высказываний
- •2.5. Выполнимость формулы алгебры логики
- •Выполнимые.
- •2.6. Применение математической логики.
- •2.7. Минимизация сложных высказываний.
- •2.7.1. Метод Квайна.
- •2.7.2. Метод минимизирующих карт.
- •2.7.3. Метод минимизации с помощью карт Вейча.
- •2.8. Булевые функции и их свойства.
- •2.8.1. Функциональная полнота. Теорема Поста.
- •2.9. Логика предикат.
- •2.9.1. Логические операции над предикатами.
- •2.9.2. Квантовые операции.
- •2.9.3. Равносильные формулы логики предикатов.
- •2.9.4. Предваренная нормальная форма предиката
- •3. Теория графов
- •3.1. Основные понятия теории графов.
- •Перечислением:
- •Множеством образов:
- •Матрицей инцидентности
- •Матрицей смежности
- •3.2. Эйлеров граф.
- •3.3. Ядро графа.
- •3.3.1. Множество внутренней устойчивости графа
- •3.3.1.1. Алгоритм Магу для определения множества внутренней устойчивости графа
- •3.3.2. Множество внешней устойчивости графа
- •3.3.2.1. Алгоритм Магу для определения множества внешней устойчивости.
- •3.4. Множество путей в графе
- •3.5. Минимальный путь в графе.
- •3.5.1. Алгоритм фронта волны.
- •3.6. Ярусно-параллельная форма графов
- •3.6.1. Алгоритм приведения графа к ярусно-параллельной форме.
- •3.7. Деревья и леса
- •3.7.1. Алгоритм получения дерева из графа
- •4. Теория алгоритмов
- •4.1. Рекурсивная функция
- •4.2. Машина Тьюринга
- •4.2.1. Работа машины Тьюринга
- •4.3. Нормальные алгоритмы Маркова
- •4.3.1. Работа нормального алгоритма Маркова
- •5. Теория автоматов
- •5.1. Законы функционирования автоматов.
- •5.2. Задание автоматов
- •5.3. Минимизация автоматов
- •5.3.1. Алгоритм минимизации автомата Мили
- •5.3.2. Особенности минимизации автомата Мура.
- •5.3.3. Минимизация частичных автоматов.
- •5.4. Переход от автомата Мили к автомату Мура
- •5.5. Переход от автомата Мура к автомату Мили
- •6. Комбинаторика
- •6.1. Основные понятия.
- •6.2. Перестановки.
- •6.3. Размещения.
- •6.4. Сочетания.
- •6.5. Треугольник Паскаля.
- •6.6. Биномиальная формула (бином Ньютона).
- •7. Нечеткие множества
- •7.1. Введение
- •7.2. Основные определения.
- •7.3. Операции над нечеткими множествами.
- •7.3. Наглядное представление операций над нечеткими множествами.
- •7.4. Свойства основных операций над нечеткими множествами.
- •7.5. Алгебраические операции над нечеткими множествами.
- •8. Нечеткая логика.
- •8.1. Лингвистические переменные
- •8.2. Нечеткая истинность
- •8.3. Нечеткие логические операции
- •9. Литература
6.6. Биномиальная формула (бином Ньютона).
Часто при решении комбинаторных задач используется биномиальная теорема (бином Ньютона).
Биномиальная теорема.
(6.14)
Доказательство.
Перемножим
последовательно (a+b)
n раз. Получим
сумму 2n
слагаемых вида d1d2...dn,
где di (i=1,…,n)
равно либо a,
либо b.
Разобьем все слагаемые на n+1
группу B0,B1,…,Bn,
относя к группе Bk
все те произведения, в которых b
встречается множителем k
раз, а a
— n–k
раз. Число элементов в Bk
очевидно равно
(таким числом способов среди n
произведений d1d2...dn
можно выбрать k
сомножителей, равных b),
а каждый элемент в Bk
равен
.
Отсюда и получаем формулу (6.14).
Пример.
Используя
биномиальную теорему, получить формулу
для расчета
и
Решение.
7. Нечеткие множества
7.1. Введение
Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.
Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, № 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.
Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.
Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.
Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.
7.2. Основные определения.
Подход к формализации понятия нечеткого множества состоит в обобщении понятия принадлежности. В обычной теории множеств существует несколько способов задания множества. Одним из них является задание с помощью характеристической функции, определяемой следующим образом.
Пусть
—
так называемое универсальное множество,
из элементов которого образованы все
остальные множества, рассматриваемые
в данном классе задач, например множество
всех целых чисел, множество всех гладких
функций и т.д.
Характеристической
функцией множества
называется
функция, значения которой указывают,
является ли
элементом
множества
:
(7.1)
(7.2)
Особенностью этой функции является бинарный характер ее значений.
С
точки зрения характеристической функции,
нечеткие множества есть естественное
обобщение обычных множеств, когда мы
отказываемся от бинарного характера
этой функции и предполагаем, что она
может принимать любые значения на
отрезке
.
В
теории нечетких множеств характеристическая
функция называется функцией
принадлежности,
а ее значение
—
степенью принадлежности элемента
нечеткому
множеству
.
Нечетким множеством называется совокупность пар
(7.3)
Пример.
Пусть
универсум
,
а множество
задано
Тогда,
очевидно, что элемент
не
принадлежит множеству
,
элемент
принадлежит
ему в малой степени, элемент
более
или менее принадлежит, элемент
принадлежит
в значительной степени,
является
элементом множества
.
Пример.
Пусть универсум есть множество действительных чисел. Нечеткое множество , обозначающее множество чисел, близких к 10, можно задать следующей функцией принадлежности:
Рис. 7.1.
Показатель
степени
выбирается
в зависимости от степени близости к 10.
Так для описания множества чисел, очень
близких к 10, можно положить
;
для множества чисел, не очень далеких
от 10,
.
Для описания множеств, представляющих собой некоторые понятия или качества, вводится понятие лингвистической переменной. Лингвистическая переменная - это переменная, значениями которой являются не числа, а слова или предложения естественного (или формального) языка.
Пример
Лингвистическая переменная "возраст" может принимать следующие значения: "очень молодой", "молодой", "среднего возраста", "старый", "очень старый" и др. Ясно, что переменная "возраст" будет обычной переменной, если ее значения — точные числа; лингвистической она становится, будучи использованной в нечетких рассуждениях человека.
Каждому значению лингвистической переменной соответствует определенное нечеткое множество со своей функцией принадлежности. Так, лингвистическому значению "молодой" может соответствовать функция принадлежности, изображенная на рис. 7.2.
Рис.
7.2.