- •Конспект лекций
- •1. Теория множеств.
- •1.1. Множества
- •1.1.1. Свойства подмножеств.
- •1.1.2 Операции над множествами.
- •1.1.3 Алгебра теории множеств.
- •1.1.4 Решение уравнений алгебры множеств.
- •1.2. Кортеж.
- •1.2.1 Проекция множества.
- •1.2.2 График и свойства графика
- •1 .2.3. Свойства графиков.
- •1.3. Соответствия и отношения
- •1.3.1. Прямое (декартовое) произведение множество.
- •1.3.2. Соответствия.
- •1.3.2.1. Свойства соответствий.
- •1.3.3. Отношения.
- •1 .3.3.1. Операции над отношениями.
- •1.3.3.2 Основные свойства отношений.
- •1.4. Решетки.
- •1.4.1 Диаграммы Хассе.
- •1.4.2 Алгебраическое представление решеток.
- •2. Математическая логика
- •2.1. Высказывания
- •2.1.1. Высказывания и операции над высказываниями.
- •2.1.2. Операции над высказываниями.
- •2.2. Формулы математической логики.
- •2.2.1. Формулы равносильности.
- •2.3. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •2.4. Различные формы представления высказываний
- •2.5. Выполнимость формулы алгебры логики
- •Выполнимые.
- •2.6. Применение математической логики.
- •2.7. Минимизация сложных высказываний.
- •2.7.1. Метод Квайна.
- •2.7.2. Метод минимизирующих карт.
- •2.7.3. Метод минимизации с помощью карт Вейча.
- •2.8. Булевые функции и их свойства.
- •2.8.1. Функциональная полнота. Теорема Поста.
- •2.9. Логика предикат.
- •2.9.1. Логические операции над предикатами.
- •2.9.2. Квантовые операции.
- •2.9.3. Равносильные формулы логики предикатов.
- •2.9.4. Предваренная нормальная форма предиката
- •3. Теория графов
- •3.1. Основные понятия теории графов.
- •Перечислением:
- •Множеством образов:
- •Матрицей инцидентности
- •Матрицей смежности
- •3.2. Эйлеров граф.
- •3.3. Ядро графа.
- •3.3.1. Множество внутренней устойчивости графа
- •3.3.1.1. Алгоритм Магу для определения множества внутренней устойчивости графа
- •3.3.2. Множество внешней устойчивости графа
- •3.3.2.1. Алгоритм Магу для определения множества внешней устойчивости.
- •3.4. Множество путей в графе
- •3.5. Минимальный путь в графе.
- •3.5.1. Алгоритм фронта волны.
- •3.6. Ярусно-параллельная форма графов
- •3.6.1. Алгоритм приведения графа к ярусно-параллельной форме.
- •3.7. Деревья и леса
- •3.7.1. Алгоритм получения дерева из графа
- •4. Теория алгоритмов
- •4.1. Рекурсивная функция
- •4.2. Машина Тьюринга
- •4.2.1. Работа машины Тьюринга
- •4.3. Нормальные алгоритмы Маркова
- •4.3.1. Работа нормального алгоритма Маркова
- •5. Теория автоматов
- •5.1. Законы функционирования автоматов.
- •5.2. Задание автоматов
- •5.3. Минимизация автоматов
- •5.3.1. Алгоритм минимизации автомата Мили
- •5.3.2. Особенности минимизации автомата Мура.
- •5.3.3. Минимизация частичных автоматов.
- •5.4. Переход от автомата Мили к автомату Мура
- •5.5. Переход от автомата Мура к автомату Мили
- •6. Комбинаторика
- •6.1. Основные понятия.
- •6.2. Перестановки.
- •6.3. Размещения.
- •6.4. Сочетания.
- •6.5. Треугольник Паскаля.
- •6.6. Биномиальная формула (бином Ньютона).
- •7. Нечеткие множества
- •7.1. Введение
- •7.2. Основные определения.
- •7.3. Операции над нечеткими множествами.
- •7.3. Наглядное представление операций над нечеткими множествами.
- •7.4. Свойства основных операций над нечеткими множествами.
- •7.5. Алгебраические операции над нечеткими множествами.
- •8. Нечеткая логика.
- •8.1. Лингвистические переменные
- •8.2. Нечеткая истинность
- •8.3. Нечеткие логические операции
- •9. Литература
2.9.3. Равносильные формулы логики предикатов.
Две формулы логики предикатов и называются равносильными на области , если они принимают одинаковые логические значения при всех значениях входящих в них переменных, отнесенных к области .
Две формулы логики предикатов и называются равносильными, если они равносильны во всякой области.
Очевидно, что все формулы равносильности алгебры высказываний будут верны, если в них вместо переменных подставить формулы логики предикатов. Но , кроме того, имеют место равносильности самой логики предикатов:
Закон де Моргана:
Закон двойного отрицания:
Для
произвольного высказывания
(предиката, не связанного по переменной
)
справедливы следующие формулы
равносильности:
Формулы замены переменных (где и из одной предметной области):
2.9.4. Предваренная нормальная форма предиката
Формула предиката имеет нормальную форму, если она содержит только операции конъюнкции, дизъюнкции, и кванторные операции, а операция отрицания отнесена к элементарному предикату.
ПРИМЕР
Пусть
дан предикат
.
Привести данный предикат к нормальной
форме
Предварённой нормальной формой предиката называется такая нормальная форма предиката, в которой кванторные операторы либо отсутствуют, либо используются после операций алгебры логики.
ПРИМЕР
Привести предикат из предыдущего примера к предваренной нормальной форме предиката
3. Теория графов
3.1. Основные понятия теории графов.
Начало теории графов как математической дисциплине было положено Леонардом Эйлером в его знаменитом решении задачи о Кенигсбергских мостах в 1736 году. План города Кенигсберга представлен на рис. 3.1. Задача о Кенигсбергских мостах сводилась к тому, чтобы построить маршрут своей воскресной прогулки так, чтобы, начиная в любой точке суши (A, B, C или D) пройти по всем мостам строго по одному разу и вернуться в исходную точку (начало маршрута).
A
B
Рис. 3.1. Иллюстрация к задаче о Кенигсбергских мостах.
Такую задачу не предоставляется возможным решить классическими методами математики. Для решения такой задачи был предложен качественно новый аппарат – аппарат теории графов.
Графом называется пара следующего вида:
,
(3.1)
где
- график
;
- множество вершин.
Иными словами, граф представляет совокупность множества вершин и дуг.
Рис. 3.2. Граф
Граф,
представленный на рис. 3. 2, состоит из
множества вершин
и
множество дуг
Графическое изображение графа является самым наглядным, но не единственным способом задания графа. Кроме того граф может быть задан:
Перечислением:
Множеством образов:
,
где
-
образ
вершины
- множество вершин, в которые исходят
дуги из данной вершины.
Матрицей инцидентности
Матрица инцидентности - это матрица вершин и инцидентных им дуг.
Дуга инцидентна вершине, если эта дуга исходит или заходит в данную вершину.
Вершина инцидентна дуге, если в эту вершину заходит или исходит данная дуга.
В матрице инцидентности в первом столбце расположены вершины, в первой строке – дуги. Остальные ячейки матрицы инцидентности заполняются по следующему правилу:
,
если из i-той
вершины исходит j-тая
дуга:
,
если в i-той
вершину заходит j-тая
дуга;
,
если i-тая
вершина не инцидента j-той
дуге;
,
если из i-той
вершины исходит j-тая
дуга и в нее
же заходит, т.е. в i-той
вершине j-тая
дуга образует петлю.
Для графа, представленного на рис. 3.2 матрица инцидентности имеет вид:
|
|
|
|
|
|
|
|
|
2 |
-1 |
+1 |
0 |
0 |
+1 |
-1 |
|
0 |
+1 |
0 |
0 |
0 |
0 |
0 |
|
0 |
0 |
-1 |
-1 |
0 |
0 |
0 |
|
0 |
0 |
0 |
+1 |
-1 |
0 |
0 |
|
0 |
0 |
0 |
0 |
+1 |
-1 |
0 |
|
0 |
0 |
0 |
0 |
0 |
0 |
+1 |
На практике в матрице инцидентности иногда нули не проставляются для наглядности.
|
|
|
|
|
|
|
|
|
2 |
-1 |
+1 |
|
|
+1 |
-1 |
|
|
+1 |
|
|
|
|
|
|
|
|
-1 |
-1 |
|
|
|
|
|
|
|
+1 |
-1 |
|
|
|
|
|
|
|
+1 |
-1 |
|
|
|
|
|
|
|
|
+1 |
Свойство матрицы инцидентности – сумма элементов по столбцам равна 0 или 2.
