
- •Конспект лекций
- •1. Теория множеств.
- •1.1. Множества
- •1.1.1. Свойства подмножеств.
- •1.1.2 Операции над множествами.
- •1.1.3 Алгебра теории множеств.
- •1.1.4 Решение уравнений алгебры множеств.
- •1.2. Кортеж.
- •1.2.1 Проекция множества.
- •1.2.2 График и свойства графика
- •1 .2.3. Свойства графиков.
- •1.3. Соответствия и отношения
- •1.3.1. Прямое (декартовое) произведение множество.
- •1.3.2. Соответствия.
- •1.3.2.1. Свойства соответствий.
- •1.3.3. Отношения.
- •1 .3.3.1. Операции над отношениями.
- •1.3.3.2 Основные свойства отношений.
- •1.4. Решетки.
- •1.4.1 Диаграммы Хассе.
- •1.4.2 Алгебраическое представление решеток.
- •2. Математическая логика
- •2.1. Высказывания
- •2.1.1. Высказывания и операции над высказываниями.
- •2.1.2. Операции над высказываниями.
- •2.2. Формулы математической логики.
- •2.2.1. Формулы равносильности.
- •2.3. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •2.4. Различные формы представления высказываний
- •2.5. Выполнимость формулы алгебры логики
- •Выполнимые.
- •2.6. Применение математической логики.
- •2.7. Минимизация сложных высказываний.
- •2.7.1. Метод Квайна.
- •2.7.2. Метод минимизирующих карт.
- •2.7.3. Метод минимизации с помощью карт Вейча.
- •2.8. Булевые функции и их свойства.
- •2.8.1. Функциональная полнота. Теорема Поста.
- •2.9. Логика предикат.
- •2.9.1. Логические операции над предикатами.
- •2.9.2. Квантовые операции.
- •2.9.3. Равносильные формулы логики предикатов.
- •2.9.4. Предваренная нормальная форма предиката
- •3. Теория графов
- •3.1. Основные понятия теории графов.
- •Перечислением:
- •Множеством образов:
- •Матрицей инцидентности
- •Матрицей смежности
- •3.2. Эйлеров граф.
- •3.3. Ядро графа.
- •3.3.1. Множество внутренней устойчивости графа
- •3.3.1.1. Алгоритм Магу для определения множества внутренней устойчивости графа
- •3.3.2. Множество внешней устойчивости графа
- •3.3.2.1. Алгоритм Магу для определения множества внешней устойчивости.
- •3.4. Множество путей в графе
- •3.5. Минимальный путь в графе.
- •3.5.1. Алгоритм фронта волны.
- •3.6. Ярусно-параллельная форма графов
- •3.6.1. Алгоритм приведения графа к ярусно-параллельной форме.
- •3.7. Деревья и леса
- •3.7.1. Алгоритм получения дерева из графа
- •4. Теория алгоритмов
- •4.1. Рекурсивная функция
- •4.2. Машина Тьюринга
- •4.2.1. Работа машины Тьюринга
- •4.3. Нормальные алгоритмы Маркова
- •4.3.1. Работа нормального алгоритма Маркова
- •5. Теория автоматов
- •5.1. Законы функционирования автоматов.
- •5.2. Задание автоматов
- •5.3. Минимизация автоматов
- •5.3.1. Алгоритм минимизации автомата Мили
- •5.3.2. Особенности минимизации автомата Мура.
- •5.3.3. Минимизация частичных автоматов.
- •5.4. Переход от автомата Мили к автомату Мура
- •5.5. Переход от автомата Мура к автомату Мили
- •6. Комбинаторика
- •6.1. Основные понятия.
- •6.2. Перестановки.
- •6.3. Размещения.
- •6.4. Сочетания.
- •6.5. Треугольник Паскаля.
- •6.6. Биномиальная формула (бином Ньютона).
- •7. Нечеткие множества
- •7.1. Введение
- •7.2. Основные определения.
- •7.3. Операции над нечеткими множествами.
- •7.3. Наглядное представление операций над нечеткими множествами.
- •7.4. Свойства основных операций над нечеткими множествами.
- •7.5. Алгебраические операции над нечеткими множествами.
- •8. Нечеткая логика.
- •8.1. Лингвистические переменные
- •8.2. Нечеткая истинность
- •8.3. Нечеткие логические операции
- •9. Литература
2.7. Минимизация сложных высказываний.
Существует несколько способов минимизации сложных высказываний. Рассмотрим самые распространенные:
метод Квайна;
карты Вейча;
минимизирующие карты.
2.7.1. Метод Квайна.
Алгоритм метода Квайна включает в себя следующие этапы:
Любая формула приводится к СДНФ.
СДНФ приводится к сокращенной ДНФ (СкДНФ). При получении СкДНФ используются следующие формулы равносильности:
а) Формула склеивания
б) Формула неполного склеивания
в) Формула поглощения
Применяя все возможные процедуры склеивания, СДНФ приводится к СкДНФ.
Минимальная форма формулы (МДНФ ) получается на основе импликантной матрицы путем нахождения минимального покрытия этой матрицы. Импликанта – это элементарная конъюнкция СкДНФ. Конституента единицы – это элементарная конъюнкция СДНФ. Импликантная матрица – это матрица импликант и констиуент единиц. (столбцы - конституенты единицы, строки – импликанты). МДНФ может быть несколько.
ПРИМЕР.
Необходимо найти МДНФ формулы:
1 2 3 4 5 6
Осуществляем всевозможные склеивания
1-2
1-4
2-3
3-6
4-5
5-6
СкДНФ имеет вид:
Составляем импликантную матрицу
-
+
+
+
+
+
+
+
+
+
+
+
+
По данной импликантной матрице можно выбрать следующие МДНФ
2.7.2. Метод минимизирующих карт.
Алгоритм метода минимизирующих карт включает в себя следующие этапы:
Любая формула приводится к СДНФ.
Составляется таблица всевозможных сочетаний переменных.
Из таблицы вычеркиваются те строки, которые не содержат конституенты СДНФ. Конъюнкции этих строк вычеркиваются в других строках.
В каждой строке оставляются конъюнкции с минимальным количеством переменных.
Из каждой строки выбирается олна конъюнкция и составляется ДНФ.
Из построенных ДНФ выбирается минимальная.
ПРИМЕР
Дана СДНФ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* - помечены строки, не содержащие конституенты СДНФ.
После соответствующих преобразований получаем следующую таблицу
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
После всевозможного перебора остаются следующие МДНФ: