
- •Дайте определение понятий «объединение множеств», «пересечение множеств». Изобразите объединение, пересечение множеств а и в с помощью кругов Эйлера
- •Дайте определение понятий «разность множеств», «дополнение множества». Изобразите разность и дополнение множеств а и в с помощью кругов Эйлера
- •Дайте определение понятий «матрица», «размерность матрицы», «элемент матрицы», «индексы элемента матрицы». Опишите операцию умножения матриц, транспонирование матриц
- •Дайте определение понятий «матрица», «размерность матрицы», «элемент матрицы», «индексы элемента матрицы». Опишите свойства, используемые для преобразования строк матрицы
- •Дайте определение понятия «определитель второго порядка». Запишите и объясните формулу его вычисления. Продемонстрируйте на примерах вычисление определителей
- •Дайте определение понятия «определитель третьего порядка». Запишите и объясните формулу его вычисления. Продемонстрируйте на примерах вычисление определителей
- •Дайте определение понятия «система линейных уравнений». Сформулируйте теорему Крамера. Охарактеризуйте метод решения слау по формулам Крaмера
- •Дайте определение понятия «система линейных уравнений». Сформулируйте условия применения метода Гаусса. Охарактеризуйте метод решения слау методом Гаусса
- •Дайте определение понятия «матричная модель». Изложите и охарактеризуйте основные этапы матричного моделирования
- •Дайте определение понятий «предел числовой последовательности». Сформулируйте основные теоремы о пределах. Опишите правила вычисления пределов
- •Дайте определение понятий «предел функции в точке». Сформулируйте основные теоремы о пределах. Опишите правила вычисления пределов
- •Дайте определение понятий «предел функции на бесконечности». Сформулируйте основные теоремы о пределах. Опишите правила вычисления пределов
- •Дайте определение понятий «функция непрерывная в точке», «точка разрыва функции». Изложите классификацию точек разрыва. Продемонстрируйте на рисунках поведение графика функции в точках разрыва
- •Дайте определение понятия «производная функции в точке». Сформулируйте правила дифференцирования алгебраических функций. Продемонстрируйте их применение
- •Дайте определение понятия «производная функции в точке». Сформулируйте правила дифференцирования сложной функции. Продемонстрируйте их применение
- •Назовите и объясните виды монотонностей функции. Сформулируйте условия возрастания и убывания функции на промежутке и продемонстрируйте их на примере функции
- •Дайте определение понятия «определенный интеграл», объясните свойства определенного интеграла. Охарактеризуйте способ непосредственного интегрирования (формула Ньютона-Лейбница)
- •Дайте определение понятия «определенный интеграл», объясните свойства определенного интеграла. Охарактеризуйте метод интегрирования по частям
- •Дайте определение понятия «определенный интеграл», объясните свойства определенного интеграла. Охарактеризуйте способ интегрирования заменой переменной
- •Дайте определение понятия «криволинейная трaпеция». Изложите виды расположения плоских фигур в системе координат и проанализируйте формулы для вычисления их площадей
- •Назовите виды приложений определенного интеграла. Изложите и проанализируйте способы нахождения объема тела вращения вокруг осей координат
- •Дайте определение понятий «ду 1-го порядка», «решение ду 1-го порядка (общего и частного решений)», «задачи Коши». Опишите решение ду 1-го порядка с разделяющимися переменными
- •Дайте определение понятий «ду 1-го порядка», «решение ду 1-го порядка (общего и частного решений)», «задачи Коши». Опишите решение однородных ду 1-го порядка
- •Дайте определение понятий «ду 1-го порядка», «решение ду 1-го порядка (общего и частного решений)», «задачи Коши». Опишите решение простейших линейных ду 1-го порядка
- •Выскажите общее суждение об упорядоченном множестве. Сформулируйте понятие перестановки из n элементов. Запишите формулу для нахождения числа перестановок. Прокомментируйте правила комбинаторики
- •Дайте определение понятия «граф», опишите его простейшие свойства. Приведите примеры решения задач с использованием графов
- •Дайте определение понятия «вероятность события» (классическое определение вероятности). Сформулируйте теорему сложения и продемонстрируйте примеры ее использования для решения задач
- •Дайте определение понятия «условная вероятность». Сформулируйте теорему умножения и продемонстрируйте примеры ее использования для решения задач
Дайте определение понятия «определитель третьего порядка». Запишите и объясните формулу его вычисления. Продемонстрируйте на примерах вычисление определителей
ОТВЕТ:
Определителем 1-го порядка квадратной матрицы А размерности 1×1 является единственный элемент этой матрицы |А| (определитель матрицы А).
Пример: А1×1
|А|=det А=|а11|=а11.
(det - детерминант)
Определителем 3-го порядка квадратной матрицы А размерности 3×3 (А3×3) называется величина, определяемая соотношением:
|А|=detА=
=
(а11·а22·а33+а13·а21·а32+а12·а23·а31)-(а13·а22·а31+а11·а23·а32+а12·а21·а33).
П
ример:
=(2·0·1+(-1) ·3· (-2)+1· (-4) ·2)-((-4) ·0· (-1)+1·3·1+2·2· (-2))=-2+5=3.
Дайте определение понятия «система линейных уравнений». Сформулируйте теорему Крамера. Охарактеризуйте метод решения слау по формулам Крaмера
ОТВЕТ:
Совокупность уравнений:
относительна неизвестных x1, x2, ..., xn-1, xn называется системой линейных алгебраических уравнений (СЛАУ).
Числа aij — коэффициенты системы, bi — правые части системы i = 1, 2, ..., m; j = 1, 2, ..., n.
Совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, называется решением системы.
Система, имеющая хотя бы одно решение, называется совместной. Система, у которой нет решений, называется несовместной.
Каждое решение совместной системы называется частным решением. Совокупность всех решений совместной системы называется общим решением.
Если среди правых частей bi системы есть хоть одна, отличная от нуля, то система называется неоднородной системой линейных уравнений.
Если все правые части системы равны нулю, то система называется однородной.
Теорема Крамера: Система из n уравнений с n неизвестными в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам: xi = Δi/Δ, где Δ=|A|, а Δi – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.
П
ример:
=
=(20-3-12)-(-8+45-2)=-30;
1
=
=(0-42-48)-(-32+0-28)=-30.
х1=Δ1/Δ=1;
2
=
=(140-16+0)-(-56+240+0)=-60.
x2=Δ2/Δ=2;
3=
=(160+0-56)-(0+210-16)=-90.
x3=Δ3/Δ=
3.
Ответ:
Дайте определение понятия «система линейных уравнений». Сформулируйте условия применения метода Гаусса. Охарактеризуйте метод решения слау методом Гаусса
ОТВЕТ:
Совокупность уравнений:
относительна неизвестных x1, x2, ..., xn-1, xn называется системой линейных алгебраических уравнений (СЛАУ).
Числа aij — коэффициенты системы, bi — правые части системы i = 1, 2, ..., m; j = 1, 2, ..., n.
Совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, называется решением системы.
Система, имеющая хотя бы одно решение, называется совместной. Система, у которой нет решений, называется несовместной.
Каждое решение совместной системы называется частным решением. Совокупность всех решений совместной системы называется общим решением.
Если среди правых частей bi системы есть хоть одна, отличная от нуля, то система называется неоднородной системой линейных уравнений.
Если все правые части системы равны нулю, то система называется однородной.
Метод Гаусса – это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.
П
ример:
x + y - 3z = 2,
3x - 2y + z = - 1,
2x + y - 2z = 0.
Решение. Выпишем расширенную матрицу данной системы:
и произведем следующие элементарные преобразования над ее строками:
а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:
~
;
б) третью строку умножим на (-5) и прибавим к ней вторую:
.
В результате всех этих преобразований данная система приводится к треугольному виду:
x + y - 3z = 2,
-5y + 10z = -7,
-10z = 13.
Из последнего уравнения находим z= -1,3.
Подставляя это значение во второе уравнение, имеем y= -1,2.
Далее из первого уравнения получим x= -0,7.