Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теории множеств11.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
429.04 Кб
Скачать

Задания для практических занятий

Задание 1. Даны два множества: и . Найти соответствие между записями: , , , .

1). 2). ; 3). ; 4). .

Задание 2. Заданы произвольные множества , , . Расположите указанные справа множества так, чтобы каждое из них было подмножеством следующего за ним.

1). 2). ; 3). ; 4). .

Задание 3. Заданы множества и . Тогда декартовым произведение этих множеств является множество:

1) 2). ; 3). ; 4). .

Задание 4. В корзине лежат белые шары, раскрашенные разными полосками: красными, синими и зелеными. Красные полоски имеют 12 шаров, синие полоски есть на 10 шарах, а зеленые полоски нарисованы на 8 шарах. Красные и синие полоски встречаются на 6 шарах, красные и зеленые полоски мелькают на 4 шарах, а синие и зеленые полоски расположены на 2 шарах. Полоски трех цветов нарисованы только на одном шаре. Сколько всего шаров в корзине? Сколько шаров имеют только красные полоски? Сколько шаров имеют только синие полоски? Сколько шаров имеют только зеленые полоски?

Задание 5. На вещественной плоскости начертите фигуры, изображающие множества

и . Какие фигуры изображают множества , , ?

Задание 6. Сколько простых чисел в диапазоне от 2 до 100?

Задание 7. Показать при помощи диаграмм Эйлера-Венна, какие равенства из перечисленных ниже верны для любых множеств , , .

1

2

3

4

5

6

Задание 8. Используя основные определения и законы теории множеств, доказать следующие тождества:

1

2

3

4

1 Два целых числа и сравнимы по модулю натурального числа , если при делении на они дают одинаковые остатки . Число называется модулем сравнения.