Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теории множеств11.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
429.04 Кб
Скачать

Основы теории множеств

Занятие 1

Множества. Основные понятия

Понятие множества является основным, неопределяемым понятием, поэтому можно только пояснить этот термин. Под множеством понимается собрание определенных и различимых между собой объектов, мыслимое как единое целое.

В этом интуитивном определении, принадлежащем немецкому математику Георгу Кантору (18451918), существенным является то обстоятельство, что собрание предметов само рассматривается как один предмет. Что касается самих предметов, которые входя во множество, то относительно них существует значительная свобода. Это может быть и множество целых чисел, и множество точек на плоскости и множество белых носорогов. Множество не обязательно должно содержать в каком-то смысле однородные объекты. Можно объединить в одном множестве и множество объектов и его одиночных представителей.

Множества обычно обозначается заглавными латинскими буквами A, B, C,…. Множество можно задать списком, перечислив все его элементы:

(1.1)

При этом порядок, в котором элементы расположены при описании множества, не имеет значения. Не имеет значения также возможность неоднократного повторения одних и тех же элементов при описании множества.

Георг Фердинанд Людвиг

Филипп Кантор

К другому способу задания множества можно отнести порождающую процедуру, например,

(1.2)

В данном случае под выражением можно понимать арифметические операции, или некоторые неформальные описания.

Пример. Множество содержит один элемент: состоит из набора элементов .

Определение множества, как совокупности всех неких объектов, которые обладают неким заданным нам свойством, не всегда может привести к однозначному ответу.

Пример Парадокс Рассела. Владелец парикмахерской в одном селе повесил следующее объявление: «Брею тех и только тех жителей села, кто не бреется сам». Спрашивается, кто бреет брадобрея?

Этот парадокс свидетельствует о том, что широко используемая теория множеств в ее интуитивном, «наивном» изложении является противоречивой. Формализация теории множеств, связанная, в частности, с устранением парадоксов, способствовала развитию не только методов теории множеств, но и такой науки, как математическая логика.

Символом обозначается отношение принадлежности. Запись означает, что элемент является элементом множества .

Определение 1.1. Множества и считаются равными, если они состоят из одних и тех же элементов.

Записать утверждение о том, что множество равно множеству можно при помощи простой формулы

(1.3)

Если множества состоят из разных элементов, то этот факт записывают

(1.4)

Пример Даны три множества , и . В силу того, что все три множества состоят из одних и тех же элементов, справедлива запись .

Пример 1.2.Даны два множества и . Эти множества нельзя считать равными, так как единственным элементом множества есть множество , множество состоит из двух элементов: чисел 1 и 2.

Определение 1.2. Если все элементы множества А принадлежат также множеству В, причем , то множество А является подмножеством В. Этот факт обозначают так:

(1.5)

Определение 1.3. Если каждый элемент множества А есть элемент множества В, причем возможно , то множество В включает подмножеством А:

(1.6)

Для наглядного представления отношений между подмножествами какого-либо универсального множества используются диаграммы Венна. Простые и лаконичные рисунки, которые впервые предложил английский математик Джон Венн (18341923), используются для иллюстрации взаимосвязей и в теории вероятности, и в логике, и в статистике и в информатике.

В теории множеств сами множества обозначают областями и размещают внутри прямоугольника, который представляет собой некое универсальное множество . Если два множества имеют общие элементы, то такие объекты иллюстрируются перекрывающимися областями.

Джон Венн

Пример 1.5. Даны два множества , и . Для этих множеств справедливо , поскольку множество включает множество , и каждый элемент множества есть элемент множества .

Множество, не содержащее элементов, называется пустым, и обозначается символом Ø. Пустое множество есть подмножество любого множества.

Множества бывают конечные и бесконечные. Конечные множества содержат конечное число элементов. Множества, не являющиеся конечными, называются бесконечными.

Число элементов конечного множества называется его мощностью. Мощность множества обозначают .

Пример 1.6. Дано множество . Тогда =5.

Множество всех подмножеств множества называется множеством-степенью и обозначается . Если множество состоит из элементов, то множество состоит из элементов.

Пример 1.7. Дано множество . Множество-степень содержит следующие подмножества: