Скачиваний:
78
Добавлен:
20.05.2014
Размер:
2.28 Mб
Скачать

§6 Семимартингалы.

6.1. Определение. Будем говорить, что последовательность имеет ограниченную вариацию, если Р - п. н. .

Определение. Последовательность с ограниченной вариацией назовем случайной последовательностью с интегрируемой вариацией, если .

Из определения следует утверждение.

Теорема 22. Пусть - последовательность с ограниченной вариацией. Тогда существуют две возрастающие последовательности , такие, что Р - п. н. для любого . (Докажите самостоятельно.)

6.2. Определение. Последовательность называется семимартингалом относительно меры Р, если она Р - п. н. для любого допускает представление

,

где - локальный мартингал относительно меры Р, - процесс ограниченной вариации.

Множество семимартингалов относительно фильтрации и меры Р обозначим через .

Теорема 23. Последовательность является относительно меры Р семимартингалом тогда и только тогда, когда она согласована с потоком .

Доказательство. Необходимость очевидна.

Достаточность. Поскольку процесс согласован с потоком , то он имеет ограниченную вариацию. Очевидно, что: i) , где , ii) Так как для любого , то существует Стало быть

, (14)

где такое, что - предсказуемо, а относительно меры Р и потока локальный мартингал. Отсюда следует утверждение теоремы так как имеет ограниченную вариацию. Доказательство закончено.

Следствие 24. Пусть тогда он допускает единственное представление (14). (Докажите самостоятельно.)

6.3. Определение. Семимартингал называется специальным, если для любого t  0 он допускает представление

, (15)

где - локальный мартингал относительно меры Р, - предсказуемая последовательность ограниченной вариации.

Теорема 25. Пусть специальный семимартингал относительно меры Р. Тогда представление (15) единственно. Докажите самостоятельно.

6.4. Теорема 26 (формула Ито). Пусть и множество ограниченных непрерывно дифференцируемых функций. Пусть семимартингал относительно меры Р. Тогда Р - п. н. справедливо равенство

(16)

где - скалярное произведение в .

Доказательство. Очевидно равенство Р - п. н. Отсюда следует (16). Доказательство закончено.

6.5. Их формулы Ито (16) легко получить представление для произведения семимартингалов.

Теорема 27. Пусть и семимартингалы со значениями относительно меры P. Тогда P – п.н. справедливо равенство

В частности

(Докажите самостоятельно).

Определение. Квадратической вариацией семимартингала , обозначаемого через , назовем случайную последовательность определяемую равенством

Определение. Взаимной вариацией семимартингалов и , обозначаемую через назовем случайную последовательность такую, что.

§7 Квадратично интегрируемые мартингалы.

7.1. Определение. Пусть мартингал относительно меры Р и , тогда такой мартингал называется квадратично интегрируемым.

Определение. Предсказуемая возрастающая последовательность, обозначаемая , называется характеристикой квадратично интегрируемого мартингала , если - мартингал относительно меры Р.

Теорема 28. Если квадратично интегрируемый мартингал, то у него существует единственная характеристика , причем:

i) Р - п. н.,

ii) - мартингал относительно меры Р.

Доказательство. Существование и единственность характеристики квадратично интегрируемого мартингала следует из теоремы Дуба-Мейера. Поэтому Р - п. н. справедливо представление

,

где мартингал относительно меры Р. Отсюда следует, что Р - п. н.

. (17)

Возьмем условное математическое ожидание относительно левой и правой частей (17), имеем Р - п. н.

Покажем, теперь, что - мартингал.

Для этого достаточно показать, что Р - п. н.

Действительно, так как

a то . Доказательство закончено.

7.2. Определение. Пусть и – квадратично интегрируемые мартингалы, предсказуемый случайный процесс, обозначаемый через , называется взаимной характеристикой квадратичноинтегрируемых мартингалов и , если является мартингалом относительно фильтрации и меры Р.

Теорема 29. Если и квадратично интегрируемые мартингалы, то взаимная характеристика существует и единственна, причем:

i)

ii) Р - п. н.

Доказательство. Сначала заметим, что и – квадратично интегрируемые мартингалы. Поэтому и - являются мартингалами, причем и - единственные предсказуемые возрастающие процессы. Заметим, что и поэтому является мартингалом относительно фильтрации и меры Р.

Отсюда следует утверждение теоремы.

7.3. Определение. Пусть , квадратично интегрируемые мартингалы относительно фильтрации и меры Р. Будем говорить, что и ортогональны, если является мартингалом.

Теорема 30. Для того чтобы квадратично интегрируемые мартингалы и были ортогональны, необходимо и достаточно, чтобы Р - п. н. для любого .

Доказательство. Пусть и ортогональны. В силу формулы Ито, имеем

(18)

Заметим, что второе, третье и четвертое слагаемые правой части (18) являются мартингалами, поэтому является мартингалом тогда и только тогда, когда Р - п. н..

Следствие 31. Пусть и квадратично интегрируемые мартингалы. Тогда мартингал относительно меры Р.

Доказательство. Достаточно доказать, что Р-п.н. . Действительно, , в силу теоремы 29 , является мартингал-разностью. Доказательство закончено.

7.4. Теорема 32 (неравенство Куниты - Ватанабэ). Пусть и квадратично интегрируемые мартингалы. Тогда Р - п. н. для любого

Доказательство следует из неравенства Коши и определения взаимной характеристики квадратично интегрируемого мартингала.

Теорема 33 (Разложение Куниты-Ватанабэ). Пусть и -квадратично интегрируемые мартингалы относительно меры Р, принимающие значения в .

Тогда существуют последовательности: i) -предсказуемая ; ii) мартингал относительно мер Р ортогональный мартингалу ; такие, что Р- п.н. справедливо разложение

, (19)

причем разложение (19) –единственно.

Доказательство. Обозначим для любого .

(20)

Очевидно, что - предсказуема. В силу того, что:

i) -мартингал относительно меры Р;

ii) из определения следует, что -мартингальное преобразование, а из неравенства Куниты-Ватанабэ следует, что оно является квадратично интегрируемым мартингалом относительно меры Р.

Поэтому - мартингал относительно меры Р.

Покажем, что - мартингал относительно меры Р. Для этого достаточно установить, в силу формулы Ито, равенство

Р- п.н., которое следует из (20). Отсюда вытекает, что Р- п.н.. Следовательно,

Установим единственность разложения (19). Действительно, пусть существуют и относительно которых справедливо разложение (19). Тогда, если , то из (19) следует, что - мартингал относительно потока и меры Р. Поэтому - мартингал. Следовательно, Р- п.н. Доказательство закончено.

7.5. Предложение 34. Пусть - локальный мартингал относительно меры Р, а локализующая последовательность. Тогда для любого является квадратично интегрируемым мартингалом относительно меры Р.

Докажите самостоятельно.

Соседние файлы в папке Лекции