
- •Методические рекомендации для студентов по подготовке к лабораторным работам Лабораторная работа № 1
- •Микробиологическая лаборатория
- •2. Подготовка микробиологической лаборатории к работе
- •Правила работы в микробиологической лаборатории
- •Ведение лабораторных записей
- •Аппараты, приборы, посуда и инвентарь
- •Основные принципы метода электронной микроскопии
- •I. Основные принципы метода электронной микроскопии
- •Различные приемы подготовки к исследованию
- •Электронный микроскоп высокого напряжения
- •Задания для выполнения Задание 1. Ознакомиться с внешним видом и ультраструктурой эукариотных клеток.
- •2. Рассмотрите электронную микрофотографию клеточной стенки растительной клетки (рис.2).Обратите внимание на наличие различных слоев, а также каналоподобных структур в клеточной стенке растений.
- •Задание 2. Ознакомиться с внешним видом и особенностями ультраструктуры прокариотных клеток.
- •Лабораторная работа № 3 изучение морфологии и биологии возбудителей молочнокислого брожения
- •1. Некоторые сведения о морфологии бактерий
- •Краткая характеристика молочнокислых бактерий
- •2. Практическое использование молочнокислых бактерий
- •Ход работы
- •1. Приготовление препарата молочнокислых бактерий
- •2. Определение кислотности молока
- •Лабораторная работа №4 изучение морфологии и биологии возбудителей спиртового брожения. Дрожжи как основной объект биотехнологии.
- •Морфологические признаки дрожжей
- •Культуральные признаки дрожжей
- •Ход работы:
- •Лабораторная работа №5 изучение строения и биологии плесневых грибов как объекта биотехнологии
- •1.1. Систематика грибов:
- •Высшие грибы.
- •Низшие грибы.
- •2 Приготовление препаратов плесневых грибов и их изучение.
- •Ход работы
- •Задание
- •Лабораторная работа №6 биология бактерий р.Clostridium как важнейшего продуцента биотехнологии
- •1. Понятие о маслянокислом брожении
- •2. Культуральные и морфологические признаки клостридиев
- •3. Роль в природе
- •4. Использование клостридиев в биотехнологии
- •5. Ход работы
- •1. Выращивание маслянокислых микроорганизмов
- •2. Микроскопирование маслянокислых микроорганизмов.
- •3. Качественные реакции на масляную кислоту.
- •3.1. Получение маслянокислого железа
- •3.2. Получение масляноэтилового эфира
- •Лабораторная работа №7 изучение строения и биологии актиномицетов как объекта биотехнологии
- •Ход работы
- •Лабораторная работа №8 биология водорослей как объекта биотехнологии
- •Основные признаки и систематика водорослей.
- •Краткая характеристика основных групп (отделов) водорослей и их отдельных представителей.
- •Практическое использование водорослей.
- •IV. Задание для выполнения
- •Лабораторная работа № 9
- •Ход работы
Основные принципы метода электронной микроскопии
Разрешающая способность светового микроскопа ограничена длиной световых волн. Максимально возможное разрешение равно половине длины волны используемого света. Таким образом получить изображение объекта размером меньше, чем эта величина невозможно. Средняя величина волны видимого света составляет примерно 550 нм, поэтому в конце ХIХ века могли получить разрешение примерно 200 нм (разрешение - это расстояние, на котором две течки видны раздельно). Незначительное увеличение разрешающей способности было достигнуто благодаря изобретению ультрафиолетового микроскопа длина волны УФ-света составляет 250 нм), обеспечивающего разрешение в 100 нм.
Однако многие клеточные структуры имеют меньшие размеры. Эта проблема была решена в тридцатые годы, когда создание электронного микроскопа произвело революцию в биологической науке. Вместо светового излучения в электронном микроскопе используют пучок электронов, у которых длина волны значительно меньше, следовательно, и разрешающая способность значительно больше. Длина волны зависит и от напряжения, подаваемого для генерации электронного пучка, но практически можно, получить разрешение в 0.5 нм, т.е. примерно в 500 раз больше, чем в световом микроскопе. Создаваемое увеличение достаточно, чтобы различить крупные молекулы. Лимитирующим фактором в достижении большего увеличения стало и остается до сих пор не усиление разрешающей способности микроскопа, а методы подготовки образца для исследования.
В сущности, принцип действия электронного микроскопа таком же, как и светового, в котором пучок световых лучей направляется линзой конденсора через образец, а полученное изображение затем увеличивается с помощью линз.
При работе на электронном микроскопе оператор сидит лицом к колонне, по которой проходит лучок электронов. Источник электронов находится в верхней части колонны, а сам образец - внизу. На вольфрамовую нить накала подается высокое напряжение (около 50000 В), и нить накала излучает поток электронов. Чтобы сфокусировать эти электроны, необходимы уже не стеклянные линзы, а электромагниты. Внутри колонны создается глубокий вакуум, чтобы сократить до минимума рассеивание электронов из-за столкновения с частицами воздуха и происходящее за этот счет нагревание.
В трансмиссионном (просвечивающем) микроскопе электроны проходят через образец, поэтому для изучения можно использовать только очень тонкие образцы. Части образца с относительно высокой молекулярной массой в наибольшей степени вызывают рассеяние электронов, поэтому для увеличения контрастности образцы пропитывают (окрашивают) тяжелыми металлами (свинец или уран). Электроны невидимы для человеческого глаза, поэтому они направляются на опалесцирующий экран, который воспроизводит видимое изображение, или же непосредственно на фотопленку, чтобы получить постоянный фотоснимок (электронную микрофотографию).
Различные приемы подготовки к исследованию
Окрашивание ультратонких срезов тяжелыми металлами. Срезы готовятся на ультратоме и окрашиваются соединениями тяжелых металлов, как нитрат свинца, уранилацетат или осмиевая кислота. Окрашенные участки становятся непроницаемы для электронов, и. на микрофотографиях они выглядят темными.
Негативное контрастирование. При негативном контрастировании окрашивается фон, тогда как сам образец остается неокрашенным. Этот метод особенно удобен при изучении деталей строения поверхности мелких частиц, таких как рибосомы, вирусы, фрагменты изолированных органелл и мембран, так как краситель проникает между деталями поверхностного строения.
Напыление. Образец бомбардируется атомами тяжелых металлов, например, золотом или платиной, в определенном направлении. Поверхность образца покрывается слоем металла, непроницаемого для электронов. Закрытые площади ("тени") не покрываются металлом и остаются прозрачными для электронов. Таким образом, образец оказывается на фотографии черным, а закрытые площади белыми. Так как человеческий глаз лучше воспринимает и интерпретирует темные отпечатки, используют обычно негативы фотографий. Напыление используют также для выявления поверхности мелких частиц (вирусов и пр.)
Замораживание-скалывание и замораживание – травление. Фрагмент ткани быстро замораживается при очень низкой температуре и затем разламывается с помощью очень тонкого лезвия. Ткань трескается вдоль слабо соединенных плоскостей, которыми часто являются мембраны. Затем, лед возгоняется, оставляя сколотую поверхность.
Реплика этой поверхности создается откладывающимся на ней слоем углерода. На эту реплику из углерода напыляется тяжелый металл, а ткани под репликой быстро разрушаются синильной кислотой. Этот метод очень удобен для изучения структуры мембраны. Его преимущество состоит в том, что ткани быстро умерщвляются, не подвергаясь химической обработке, которая может повлиять на структуру. Вполне вероятно, что клетки сохраняют свою прижизненную форму.
Сканирующий электронный микроскоп
Сравнительно недавно был введен в употребление новый тип микроскопа сканирующий. В нем очень точно сфокусированимй пучок электронов двигается взад и вперед по поверхности образца, а отраженные от его поверхности электроны формируют изображение. Создается эффект трехмерности. Разрешающая способность такого микроскопа ниже, чем у трансмиссионного.
Электронный микроскоп высокого напряжения
Электронные микроскопы высокого напряжения (500000 – 1000000 В) стали использоваться в биологии недавно. Большее ускорение электронов позволяет им проходить через сравнительно толстые срезы, при этом получают трехмерное изображение структур при высоком разрешении. Сейчас внедряют методы, позволяющие быстро исследовать живые образцы, что в будущем должно дать весьма важную информацию.
Лабораторная работа №2
Знакомство с методом электронной микроскопии биологических объектов. Ультраструктура эукариотной и прокариотной клеток.
Для выполнения данной работы необходимо иметь предварительные знания об особенностях ультраструктуры эукариотных и прокариотных клеток (см. Грин, т.1,стр.210-217, 224-242), а также об особенностях хранения и передачи наследственной информации у бактерий (см. Грин, т.1,стр.15-24).