
- •«Электрические аппараты» и «Электрические станции и подстанции»
- •1 Электродинамические усилия в электрических аппаратах. Методы расчета
- •1. Основные понятия
- •Методы расчета электродинамических сил
- •2. Объясните появление электродинамических усилий в месте изменения сечения
- •3. Электродинамические усилия при переменном токе. Проверка аппаратов на
- •При однофазном токе. Рассмотрим силы, действующие между параллельными проводниками, сначала при однофазном токе.
- •При расположении проводников в одной плоскости
- •При расположении проводников правильным треугольником
- •4. Нагрев электрических аппаратов в режиме короткого замыкания. Проверка
- •5. Принципы гашения дуги в аппаратах до 1000 в.
- •6. Принципы гашения дуги в аппаратах выше 1000 в.
- •7. Токоограничивающие реакторы: принцип действия. Особенности конструкции, условия выбора и проверки
- •8. Приведите преимущества сдвоенных токоограничивающих реакторов. Докажите расчетами.
- •9. Аппараты защиты от перенапряжений: принцип действия, особенности
- •10. Класс точности трансформаторов тока и напряжения. Компенсация погрешностей
- •11. Назначение и краткая характеристика подстанций
- •По способу присоединения подстанции подразделяются на следующие виды:
- •Способы управления подстанции.
- •12 Типы электростанций и их характеристики.
- •13. Режимы энергосистемы и участие электростанций в производстве
- •14. Структурные схемы подстанций
- •15. Структурные схемы кэс, гэс и гаэс.
- •16. Структурные схемы тэц.
- •17. Главные схемы электрических установок и требования к ним.
- •18. Собственные нужды кес. Выбор мощности рабочих и резервных трансформаторов собственных нужд кэс. Схемы питания собственных нужд кес.
- •19. Собственные нужды тэц. Выбор мощности рабочих и резервных трансформаторов собственных нужд тэц. Схемы питания собственных потребностей тэц.
- •20. Виды оперативного тока на электростанциях и подстанциях.
10. Класс точности трансформаторов тока и напряжения. Компенсация погрешностей
Класс точности измерительного трансформатора тока выбирается в зависимости от его назначения. Если к трансформатору тока подключаются расчетные счетчики электроэнергии, то класс точности его работы должен быть 0,5. Если же к трансформатору тока подключаются только измерительные приборы, то достаточен класс точности единица.
При
эксплуатации ТТ может оказаться, что
его погрешности больше заданного класса
точности, а уменьшения их изменением
конструктивных параметров ТТ не
представляется возможным или экономически
невыгодным. Поэтому используются
специальные способы уменьшения
погрешности. Эти способы обеспечивают
уменьшение погрешностей при нормальном
режиме работы ТТ, т.е. при изменении
первичного тока в диапазоне от 10 до 120%
номинального.
Отрицательную
токовую погрешность можно уменьшить,
отмотав от вторичной обмотки трансформатора
тока то или иное число витков. Такой
способ уменьшения токовой погрешности
называется витковой коррекцией. При
витковой коррекции число витков вторичной
обмотки становится меньше номинального
292 числа витков. Вследствие этого
уменьшается МДС вторичной обмотки,
направленная против МДС первичной
обмотки. Последняя остается неизменной,
так как определяется только первичным
током и числом витков первичной
обмотки.
Уменьшение
МДС вторичной обмотки будет сопровождаться
увеличением МДС и намагничивания и
результирующего магнитного потока Ф0.
Увеличение магнитного потока Ф0 приведет
к повышению ЭДС во вторичной обмотке.
Вследствие этого увеличивается и
вторичный ток. Увеличение вторичного
тока приводит к уменьшению отрицательной
токовой погрешности или даже к изменению
ее знака. Результирующая токовая
погрешность ТТ с витковой коррекцией
равна алгебраической сумме номинальной
токовой погрешности (которая всегда
отрицательна) и токовой погрешности,
полученной в результате отмотки, и
называется действительной токовой
погрешностью. Она может быть вычислена
по формуле
Повысить эффективность витковой коррекции при малом числе витков оказывается возможным, если отмотать не целое, а дробное число витков (т.е. часть витка). Для этого вторичная обмотка должна иметь специальное исполнение. Витковая коррекция является простым и широко распространенным способом уменьшения отрицательной токовой погрешности. Изменить токовую погрешность можно одним из способов, получивших общее название компенсации погрешностей. Большая часть способов компенсации погрешностей ТТ основана на свойстве ферромагнитных материалов изменять свою проницаемость в зависимости от магнитной индукции. Искусственно изменяя магнитную индукцию в магнитопроводе, можно увеличить его магнитную проницаемость и тем самым снизить погрешность ТТ. Компенсацию погрешностей можно осуществить следующими способами: 1) спрямлением кривой намагничивания; 2) подмагничиванием магнитопровода; 3) созданием нулевого потока; 4) перераспределением потоков рассеяния.
Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.
В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3.
Погрешность зависит от конструкции магнитопровода, магнитной проницаемости стали и от cosφ2, т.е. от вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.
Суммарное потребление обмоток измерительных приборов и реле, подключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.