
- •3 Химические источники тока различных электрохимических систем Лабораторная работа №1 марганцево-цинковые солевые и щелочные элементы
- •Солевые марганцево-цинковые элементы.
- •Типичный состав эдм
- •Обозначение мц элементов.
- •Обозначение мц элементов с щелочным электролитом
- •Характеристики мц элементов.
- •Сравнение характеристик мц солевых и щелочных элементов
- •Конструкции мц солевого и щелочного элементов.
- •Марганцево-цинковые перезаряжаемые хит.
- •Параметры перезаряжаемых марганцево-цинковых хит
- •Утилизация мц элементов.
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №2 воздушно-металлические источники тока
- •Воздушно-цинковые химические источники тока
- •Призматические воздушно-цинковые хит
- •Дисковые пуговичные и цилиндрические воздушно-цинковые хит
- •Механически перезаряжаемые воздушно-цинковые хит
- •Электрически перезаряжаемые воздушно-цинковые хит
- •Разность потенциалов δе выделения кислорода и восстановления его из воздуха при плотности тока 100 мА/см2 при 298 к при использовании различных катализаторов
- •Воздушно-алюминиевые и воздушно-магниевые хит
- •Хит с солевыми (хлоридными) электролитами
- •Воздушно-алюминиевый хит с щелочным электролитом
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №3 литиевые первичные источники тока
- •Классификация лхит
- •Теория литиевых первичных источников тока
- •Характеристики литиевых элементов с неводным электролитом
- •Особенности конструкции
- •Источники тока на базе системы литий-диоксид марганца
- •Примеры системы литий-диоксид марганца фирмы «gp Batteries» (сша)
- •Элементы системы литий-йод
- •Основные параметры источников тока системы литий-йод (для медицинской техники) оао «Литий-элемент»
- •Характеристики литиевых элементов
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №4 свинцово-кислотные аккумуляторы и батареи
- •Промышленно выпускаемые свинцовые аккумуляторы
- •Классификация свинцовых аккумуляторов и батарей.
- •Теоретические вопросы свинцовых аккумуляторов
- •Виды сплавов решеток положительного электрода
- •Разрядно-зарядные характеристики.
- •Сравнительные параметры различных типов сепарационных материалов для свинцовых аккумуляторов
- •Сравнение характеристик и наиболее распространенных конструкций свинцово-кислотных аккумуляторов
- •Классическое (традиционное) исполнение аккумулятора
- •Заряд свинцово-кислотных аккумуляторов
- •Безуходные (герметизированные) свинцовые аккумуляторы
- •1 Напряжение, 2 зарядная емкость, 3 ток заряда
- •Комплексная переработка отработанных свинцово-кислотных аккумуляторов
- •Пути усовершенствования свинцовых аккумуляторов
- •1 Вкладыш из алюминия; 2 термодиффузионное покрытие; 3 свинцовый сплав.
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №5 никель-кадмиевые аккумуляторы
- •Параметры промышленно выпускаемых никель-кадмиевых аккумуляторов
- •Теория никель-кадмиевых аккумуляторов
- •Конструкция нк аккумуляторов
- •1 − Корпус; 2 –сепаратор; 3 –положительный электрод; 4 – отрицательный электрод; 5 − крышка; 6 – пружина; 7 – уплотнитель;
- •Характеристики нк аккумуляторов
- •Утилизация и регенерация нк аккумуляторов
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №6 никель-металлогидридные аккумуляторы
- •Сравнительные параметры щелочных аккумуляторов
- •Реакции, протекающие в нмг аккумуляторах
- •Конструкция нмг аккумуляторов
- •Герметизация аккумулятора
- •Характеристики нмг аккумуляторов
- •Режим заряда нмг аккумуляторов
- •Утилизация нмг аккумуляторов
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №7 литий-ионные и литий-полимерные аккумуляторы
- •Аккумуляторы с металлическим литиевым анодом
- •Литий-ионные аккумуляторы
- •Нанотехнологии в лиа
- •Особенности конструкции
- •Характеристики Li-ion аккумуляторов.
- •Литиевые аккумуляторы с полимерным электролитом.
- •Характеристики Li-аккумуляторов с пэ
- •Утилизация литиевых аккумуляторов
- •Варианты заданий к лабораторной работе
- •Лабораторная работа №8 топливные элементы
- •Особенности тэ
- •Теория и конструкция топливных элементов
- •Типы топливных элементов
- •Основные характеристики топливных элементов
- •Методика проведения лабораторной работы
- •Экспериментальные данные, полученные при работе щтэ на различные нагрузки
- •Экспериментальные данные, полученные при разряде топливного кислородно-водородного элемента
- •Экспериментальные значения коэффициентов диффузии водорода в газодиффузионном электроде
- •Результаты определения коэффициентов диффузии водорода
Литиевые аккумуляторы с полимерным электролитом.
Литий-полимерные (Li-pol) аккумуляторы отличаются от литий-ионных видом используемого полимерного электролита (ПЭ), являющегося одновременно пористым сепаратором и обладающего ионной проводимостью. Все полимерные электролиты делят на 3 типа: сухие, гель-полимерные, содержащие пластификаторы (пропиленкарбонат, этиленкарбонат, диметилкарбонат и др.) и микропористые (например, на основе сополимера винилиденфторида с гексафторпропиленом, в порах которого находится неводный раствор соли). В таблице 1 приведены характеристики аккумуляторов с ПЭ.
Недостатками сухого и микропористого электролита являются их плохая проводимость и высокое внутреннее сопротивление. Однако они хорошо работают при температурах выше 40°С. Литиевый аккумулятор с гель-полимерным электролитом имеет более высокую проводимость, является гибридным и его называют Li-ионным полимерным аккумулятором.
Таблица 1.
Характеристики Li-аккумуляторов с пэ
Тип ПЭ |
Состав и характеристика ПЭ |
Электрическая проводимость, См/м |
Характеристики аккумулятора |
Сухой ПЭ |
полиэтиленоксид + соль лития (LiClO4 LiBF4, LiAsF6) |
10–5–10–2; с добавкой при 60°С до 0,1 |
металлический литиевый анод; безопасны, низкий саморазряд; высокое омическое сопротивление границы раздела электрод/электролит; >100 Вт·ч/кг |
Гель-полимерный |
полиакрилонитрил/ поливинилхлорид + соль лития + пластификатор-растворитель |
до 5 при 25°С |
металлический литиевый анод; 155–160 Вт·ч/кг и 175–270 Вт·ч/л; до 500 циклов |
поливинилиденфторид + полиалкилен-гликольдиакрилаты + соль лития |
до 10,5 |
углеродистый анод; до 500 циклов с сохранением 70% нормируемой емкости. Токи разряда и заряда от 1C до 25C [25]. |
|
Микропористый ПЭ |
пористая матрица с порами 0,1–1 мкм (поливинилденфторид) + неводный раствор соли лития |
до 0,1 |
100–125 Вт·ч/кг; 200–250 Вт·ч/л; 500–1000 циклов |
Li-полимерные и Li-ионные полимерные аккумуляторы имеют следующие преимущества: малую толщину (до 1 мм), гибкий форм-фактор, простую конфигурацию корпуса, лучшую безопасность при эксплуатации. Однако Li-ионные полимерные аккумуляторы имеют более низкую энергетическую плотность и меньший ресурс по сравнению с Li-ионными, а также их производство дороже.
Процесс заряда литий-полимерных аккумуляторов подобен заряду литий-ионных.
Утилизация литиевых аккумуляторов
Большие масштабы производства литиевых ХИТ с учетом используемых в них материалов делают приоритетной проблему утилизации литиевых аккумуляторов после выработки их ресурса, а также отбракованных изделий и технологических отходов производства.
Необходимость утилизации литиевых ХИТ обусловлена как экологическими (литий, его соединения, электролит, катодные материалы являются экологически опасными и могут привести к значительному загрязнению окружающей среды), так и экономическими факторами.
Экологические факторы подробно рассмотрены в вопросе утилизации первичных ЛХИТ (лаб. раб. №3, с. 109).
Экономические факторы. В состав литиевых вторичных ХИТ входит большое количество ценных материалов: металлический литий и его соединения, содержащие дорогостоящие компоненты – кобальт, никель, и др., а также органические вещества.
Известно несколько схем утилизации литий-ионных аккумуляторов, которые используют операции вскрытия источников (механическим, электролитическим способами или с применением лазерного пучка), извлечения и нейтрализации электролита, обработки катодного материала с выделением Co, перевод лития в раствор и т. д. [26, 27].
Большой интерес представляет схема процесса утилизации использованных Li-ионных аккумуляторов с положительным электродом на основе кобальтата лития и электролитом LiPF6 в смеси пропиленкарбоната с диэтилкарбонатом (рис. 8).
Отсутствие металлического лития в литий-ионных аккумуляторах позволяет упростить разборку источников тока и процесс дальнейшей переработки отходов.
Из полученного осадка Co(OH)2 в течение 3 ч при 450°С получают Co3O4, который затем смешивают со стехиометрическим количеством Li2CO3, получающимся в процессе утилизации первичных литиевых источников тока. В результате 5-часового прогрева при 400°С, гомогенизации и последующего 20-часового отжига при 700°С получается кобальтат лития необходимого качества для использования в аккумуляторах. Таким образом, сочетая утилизацию первичных литиевых источников тока и литий-ионных аккумуляторов, удалось создать удачную технологию комплексной рекуперации литиевых источников тока. Считается целесообразным утилизацию литиевых ХИТ проводить на предприятиях, где их изготавливают.
Массовое применение литий-ионных аккумуляторов значительно упрощает проблему их сбора после выработки ресурса. Актуальность вопроса сбора и утилизации отработанных ЛХИТ приобретает все большее значение и для Республики Беларусь.
Рис. 8. Технологическая схема процесса переработки использованных
литий-ионных аккумуляторов