
- •Рецензенты:
- •Экзаменационные вопросы по математической статистике с элементами теории вероятностей теория вероятностей
- •Правила выполнения и оформления домашнего задания (контрольной работы)
- •Вариант выбирается по последней цифре зачетной книжки. В случае если последняя цифра ноль, решается 10 вариант.
- •1.Элементы комбинаторики
- •1.1. Размещения
- •1.2. Понятие факториала
- •1.3. Размещения с повторениями
- •1.4. Сочетания
- •Сочетания с повторениями
- •1.6. Перестановки
- •1.7. Перестановки с повторениями
- •1.8. Правила комбинаторики
- •Задачи к теме 1
- •2.Элементы теории вероятностей
- •2.1. Определение вероятности и свойства, вытекающие из её определения. Классификация событий. Диаграммы Венна
- •Полную группу можно определить так: если
- •2.2. Правила сложения и умножения вероятностей. Зависимые и независимые события
- •Задачи к теме 2
- •3. Формулы полной вероятности и байеса
- •Необходимо определить вероятность события а и переоценить вероятности событий Hi с учетом полной информации о событии а.
- •Задачи к теме 3
- •4. Дискретные случайные величины.
- •4.1. Определение дискретной случайной величины.
- •4.2.Числовые характеристики.
- •4.3. Математические операции над случайными величинами.
- •4.4. Распределения Бернулли и Пуассона.
- •4.5. Гипергеометрическое распределение.
- •График функции распределения вероятностей дискретной случайной величины
- •График функции (вероятностная гистограмма)
- •График функции распределения.
- •5. Непрерывные случайные величины.
- •5.1. Функция распределения и плотность распределения непрерывной случайной величины.
- •5.2. Нормальное распределение
- •Задачи к теме 5
- •6. Вариационные ряды и их характеристики
- •6.1.Понятие вариационного ряда. Виды вариационных рядов.
- •6.2. Числовые характеристики вариационного ряда
- •Задачи к теме 6
- •7. Выборочный метод и статистическое оценивание
- •7.2. Статистическое оценивание
- •7.3. Ошибки выборки
- •Формулы расчёта ошибки выборки для собственно-случайного отбора
- •7.4. Определение численности (объема) выборки
- •Формулы расчёта необходимой численности выборки для собственно-случайного отбора
- •7.5. Интервальное оценивание
- •8. Проверка статистических гипотез
- •(Кривая вероятностей)
- •Критические точки распределения 2
- •Критические точки распределения Стьюдента
- •Критические точки распределения Фишера-Снедекора
- •Практикум по теории вероятностей и математической статистике
- •344000, Г. Ростов – на - Дону, ул. Б. Садовая,69. Риц ргэу «ринх»
Практикум по теории вероятностей и математической статистике
Ниворожкина Людмила Ивановна
Морозова Зоя Андреевна
Герасимова Ирина Алексеевна
Житников Игорь Васильевич
Федосова Оксана Николаевна
Корректирование и редактура авторов
Изд.№ 241/618 Подписано к печати 28.09.07 Бумага офсетная Печать цифровая
Формат 60*84/16 Объем 7,2 уч.-изд.л. Заказ № Тираж 500 экз.
344000, Г. Ростов – на - Дону, ул. Б. Садовая,69. Риц ргэу «ринх»
Отпечатано в КМЦ “Копицентр”. 344006, г. Ростов – на – Дону, ул.Суворова,19
1 Выводы формул для числа размещений, а в последующем изложении - для числа сочетаний, - опускаются. Их можно найти в курсе элементарной алгебры.
2 В учебниках по математической статистике вместо термина “статистическая совокупность” используется термин “набор данных”, а вместо термина “единица совокупности” используется термин “элемент выборки”.
3 Для того, чтобы любые статистики служили хорошими оценками параметров генеральной совокупности, они должны обладать рядом свойств: несмещённости, эффективности, состоятельности, достаточности. Всем указанным свойствам отвечает выборочная средняя. s2выб. -смещённая оценка. Для устранения смещения при малых выборках вводится поправка n n-1 (cм. 7.1.).
4 В литературе ( 1 - n /N ) иногда называется "поправкой на бесповторность отбора".
5
Для нормально распределенной случайной
величины
а
.
Поэтому справедливо:
.
6 В этой работе рассматриваются первые два типа гипотез.
7 Эти гипотезы часто называют параметрическими, тогда как все остальные - непараметрическими.