Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MSTV_prаaktikum.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
3.88 Mб
Скачать

4.4. Распределения Бернулли и Пуассона.

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

  1. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

  2. Все n испытаний - независимы . Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз ( в любой последовательности), равна

(4.10)

где q=1-р.

Выражение (4.10) называется формулой Бернулли.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).

Таблица 4.3

Число успехов Х=m

0

1

2

...

m

...

n

Вероятность Р

...

...

Так как правая часть формулы (4.10) представляет общий член биноминального разложения , то этот закон распределения называют биномиальным. Для случайной величины Х, распределенной по биноминальному закону, имеем:

M(X)=nр (4.11)

D(X)=nрq (4.12)

Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой:

(4.13)

где m - число появлений события в n независимых испытаниях, ( среднее число появлений события в n испытаниях).

Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4):

Таблица 4.4

M

0

1

2

...

m

...

n

Pn;m

...

...

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий.

Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10.

Математическое ожидание к дисперсии случайной величины, распределенной по закону Пуассона, совпадают и равны параметру , которая определяет этот закон, т.е.

M(X)=D(X)=np= . (4.14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]