Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MSTV_prаaktikum.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
3.88 Mб
Скачать

4.2.Числовые характеристики.

Математическим ожиданием дискретной случайной величины называется:

( 4.4)

В случае бесконечного множества значений в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

  1. М(С)=С, где С=const

  2. M (CX)=CM (X) (4.5)

  3. M (X+Y)=M(X)+M(Y), для любых Х и Y.

  4. M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)=а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения . Дисперсией называется математическое ожидание квадрата разности (X- ), т.е. :

D(X)=M(X- )2= pi,

где =М(X); определяется как квадратный корень из дисперсии, т.е. .

Для вычисления дисперсии пользуются формулой:

(4.6)

Свойства дисперсии и среднего квадратического отклонения:

  1. D(C)=0, где С=сonst

  2. D(CX)=C2D(X), (CX)= C (X) (4.7)

3) D(X+Y) =D(X)+D(Y),

если Х и У независимы.

Размерность величин и совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

4.3. Математические операции над случайными величинами.

Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями , что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2:

Таблица 4.2

...

...

Квадрат случайной величины Х, т.е. , - это новая случайная величина ,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида с вероятностями , выражающими вероятность того, что случайная величина Х примет значение а У - значение , то есть

(4.8)

Если случайные величины Х и У независимы, то:

(4.9)

Аналогично определяются разность и произведение случайных величин Х и У.

Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида , а произведение - все значения вида с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]