Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_k_biokhimii.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.39 Mб
Скачать

Нормальные значения мочевины в крови

Концентрация мочевины в сыворотке крови здоровых взрослых людей составляет 2,5 — 8,3 ммоль/л (660 мг/л). У женщин, по сравнению со взрослыми мужчинами, концентрация мочевины в сыворотке крови обычно ниже. У пожилых людей (старше 60 лет) наблюдается некоторое увеличение концентрации мочевины в сыворотке крови (примерно на 1 ммоль/л по сравнению с нормой здоровых взрослых людей), что обусловлено снижением у пожилых способности почек концентрировать мочу.

У детей уровень мочевины ниже, чем у взрослых, однако у новорожденных в первые 2 — 3 дня содержание ее может достигать уровня взрослого (проявление физиологической азотемии, обусловленной повышенным катаболизмом на фоне недостаточного поступления жидкости в первые 2 — 3 сут жизни и низкого уровня клубочковой фильтрации). В условиях гипертермии, эксикоза цифры мочевины могут возрасти еще больше. Нормализация наступает к концу первой недели жизни. Уровень мочевины в крови у недоношенных 1 нед. - 1,1 — 8,9 ммоль/л (6,4 — 63,5 мг/100 мл), у новорожденных — 1,4 — 4,3 ммоль/л (8,6 — 25,7 мг/100 мл), у детей после периода новорожденности — 1,8 — 6,4 ммоль/л (10,7 — 38,5 мг/100 мл).

Повышение уровня мочевины в крови, связанное с ее усиленным образованием или снижением ее фильтрации в почках в результате нарушения гемодинамики, как правило, не достигает больших значений, содержание мочевины обычно не превышает 13 ммоль/л.

Выделительная функция слюны В состав слюны могут выделяться продукты обмена — мочевина, мочевая кислота, некоторые лекарственные вещества, а также соли свинца, ртути и др., которые выводятся из организма после сплевывания, благодаря чему организм освобождается от вредных продуктов жизнедеятельности. Слюноотделение осуществляется по рефлекторному механизму. Различают условно-рефлекторное и безусловно-рефлекторное слюноотделение.

Гормональная регуляция обмена веществ и функций организма

  1. Основные регуляторные системы организма и механизмы регуляции метаболизма и функций. Центральная регуляция эндокринной системы: роль либеринов, статинов, тропных гормонов гипофиза.

  2. Гормоны, их место в системе регуляции метаболизма. Классификация. Механизм передачи гормонального сигнала в клетку.

  3. Инсулин. Строение, образование, функции, инактивация. Изменения концентрации инсулина в зависимости от ритма питания. Механизм действия.

  4. Сахарный диабет. Важнейшие изменения гормонального статуса и метаболизма при диабете. Биохимические механизмы формирования симптомов болезни и развития диабетической комы.

  5. Кальций и фосфор. Биологические функции, распределение в организме, роль в процессах минерализации твердых тканей ротовой полости. Гипо- и гиперкальциемия, причины, следствия.

  6. Регуляция обмена кальция и фосфатов. Паратгормон и кальцитонин, строение, функции. Роль слюнных желез в регуляции обмена кальция (паротин).

  7. Регуляция обмена кальция и фосфатов. Метаболизм и функции витамина Д3. Причины и следствия недостаточности и избытка.

  8. Глюкокортикоиды. Строение, условия синтеза. Влияние на обмен белков, липидов и углеводов в тканях-мишенях.

  9. Строение, синтез и метаболизм гормонов щитовидной железы. Влияние на обмен веществ. Гипо- и гипертиреозы.

  10. Роль почек и слюнных желез в регуляции водно-солевого обмена. Строение и функции вазопрессина и альдостерона. Ренин-ангиотензиновая система.

  11. Катехоламины. Строение, биосинтез, биологические функции, нарушения обмена, последствия.

  12. Регуляторная функция слюнных желез. Синтез и секреция слюнными железами ренина, калликреина, эпидермальных факторов роста и других биологически активных веществ.

76) Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют 4 основные системы регуляции (рис. 11-1).

  • Центральная и периферическая нервные системы через нервные импульсы и нейромедиаторы;

  • Эндокринная система через эндокринные железы и гормоны, которые секретируются в кровь и влияют на метаболизм различных клеток-мишеней;

  • Паракринная и аутокринная системы посредством различных соединений, которые секретируются в межклеточное пространство и взаимодействуют с рецепторами либо близлежащих клеток, либо той же клетки (простагландины, гормоны ЖКТ, гистамин и др.);

  • Иммунная система через специфические белки (цитокины, антитела).

Системы регуляции обмена веществ и функций организма образуют 3 иерархических уровня.

Первый уровень ЦНС. Нервные клетки получают сигналы, поступающие из внешней и внутренней среды, преобразуют их в форму нервного импульса и передают через синапсы, используя химические сигналы - медиаторы. Медиаторы вызывают изменения метаболизма в эффекторных клетках.

Второй уровень - эндокринная система. Включает гипоталамус, гипофиз, периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.

Третий уровень - внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути

Известные в настоящее время гипофизотропные гормоны гипоталамуса подразделяют на гормоны, усиливающие (рилизинг-гормоны, либерины) и тормозящие (статины) выделение соответствующих тропных гормонов. Роль либеринов и статинов не сводится только к регуляции деятельности аденогипофиза. Соматостатин и тиролиберин оказывают

прямое действие на ЦНС, вызывая различные поведенческие и двигательные реакции

77) Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона.

В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью.

Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС

Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ, release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями.

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратнойсвязи. 

Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови.