
- •1. Рабочая учебная программа дисциплины
- •1.1. Цели и задачи изучения дисциплины
- •1.2. Структура и объем дисциплины
- •1.3. Содержание дисциплины (распределение фонда времени по темам и видам занятий)
- •1.4. Требования к уровню освоения дисциплины Примерные вопросы к зачету (экзамену)
- •2. Учебно-методическое пособие Лекционный курс биология как наука. Методы научного познания
- •Глава 1. Жизнь. Ее возникновение на земле. Свойства и уровни организации
- •1.1. Происхождение жизни на Земле
- •1.2. Начальные этапы развития жизни на Земле
- •1.3. Определение, основные свойства и уровни организации живого
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Раздел I. Основы цитологии
- •Глава 2. Химический состав клетки
- •2.1. Атомный (элементарный) состав клетки
- •2.2. Молекулярный состав клетки
- •2.2.1. Неорганические вещества
- •2.2.2. Органические вещества
- •2.2.2.1. Углеводы
- •2.2.2.2. Липиды
- •2.2.2.3. Белки
- •2.2.2.4. Нуклеиновые кислоты
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 3. Строение клетки
- •3.1. Типы клеточной организации
- •3.2. Строение эукариотической клетки
- •3.2.1. Клеточная оболочка
- •3.2.2. Цитоплазма. Органоиды и включения
- •3.2.3. Клеточное ядро
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 4. Обмен веществ и превращение энергии в клетке
- •4.1. Обмен веществ и превращение энергии
- •4.2. Значение атф в обмене веществ
- •4.3. Энергетический обмен (диссимиляция, катаболизм) в клетке. Синтез атф
- •4.4. Пластический обмен (ассимиляция, анаболизм)
- •4.4.1. Фотосинтез
- •4.4.2. Хемосинтез
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 5. Воспроизведение клеток
- •5.1. Жизненный (клеточный) цикл
- •5.2. Деление клетки
- •5.2.1. Амитоз – прямое деление
- •5.2.2. Митоз – непрямое деление
- •5.2.3. Мейоз – редукционное деление
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Организм
- •Раздел II. Размножение и развитие организмов
- •Глава 6. Размножение организмов
- •6.1. Бесполое размножение
- •6.2. Половое размножение
- •6.2.1. Образование половых клеток
- •6.2.2. Оплодотворение
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 7. Индивидуальное развитие организмов
- •7.1. Типы онтогенеза
- •7.2. Периодизация онтогенеза
- •7.3. Эмбриональный период
- •7.3.1. Дробление
- •7.3.2. Гаструляция
- •7.3.3. Гисто- и органогенез
- •7.3.4. Взаимодействие частей развивающегося зародыша
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Раздел III. Основы генетики и селекции
- •Глава 8. Генетическая информация
- •8.1. Основные генетические процессы. Экспрессия генов
- •8.2. Репликация днк
- •8.3. Синтез белков
- •8.3.1. Транскрипция днк
- •8.3.2. Трансляция мРнк
- •8.3.3. Генетический код
- •8.3.4. Процесс синтеза белка
- •8.4. Элементы регуляции экспрессии генов
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 9. Основные закономерности наследственности
- •9.1. Моногибридное скрещивание
- •9.1.1. Гибридологический метод изучения наследования
- •9.1.2. Первый закон Менделя (правило единообразия). Второй закон Менделя (правило расщепления)
- •9.1.3. Гипотеза "чистоты гамет". Цитологические основы наследования альтернативных признаков
- •9.2. Дигибридное скрещивание. Третий закон Менделя (правило независимого наследования). Цитологические основы
- •9.3. Анализирующее скрещивание
- •9.4. Взаимодействие генов
- •9.4.1.Взаимодействие аллельных генов. Множественные аллели
- •9.4.2 Взаимодействие неаллельных генов
- •9.5. Сцепленное наследование
- •9.6. Хромосомное определение пола. Сцепление с полом
- •9.7. Нехромосомное наследование
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 10. Изменчивость
- •10.1. Наследственная изменчивость
- •10.1.1. Комбинативная изменчивость
- •10.1.2. Мутационная изменчивость
- •10.2. Ненаследственная (фенотипическая, модификационная) изменчивость
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 11. Генетика человека и ее значение для медицины
- •11.1. Методы генетики человека
- •11.1.1. Генеалогический метод
- •11.1.2. Популяционный метод
- •11.1.3. Близнецовый метод
- •11.1.4. Цитогенетический метод
- •11.1.5. Биохимический метод
- •11.2. Медико-генетическое консультирование
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 12. Основы селекции
- •12.1. Методы селекции
- •12.1.1. Отбор и гибридизация
- •12.1.2. Мутагенез и полиплоидия
- •12.1.3. Клеточная и генная инженерия
- •12.2. Селекция растений
- •12.3. Селекция животных
- •12.44. Селекция микроорганизмов
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Раздел IV. Эволюция и экология
- •Глава 13. Эволюционное учение
- •13.1. Теория эволюции
- •13.1.1. Ламаркизм
- •13.1.2. Дарвинизм. Эволюция путем естественного отбора
- •13.1.3. Развитие дарвинизма
- •13.2. Микроэволюция
- •13.2.1. Критерии и структура вида. Популяция
- •13.3. Факторы эволюции
- •13.3.1. Мутационный процесс
- •13.3.2. Популяционные волны. Дрейф генов
- •13.3.3. Изоляция
- •13.3.4. Естественный отбор
- •13.4. Образование новых видов
- •13.5. Макроэволюция
- •13.5.1. Направления и пути эволюционного процесса
- •13.5.2. Связь между индивидуальным и историческим развитием организмов
- •13.6. Развитие органического мира
- •13.6.1. Доказательства эволюции органического мира
- •13.6.2. Эволюция клеток
- •13.6.3. Эволюция многоклеточных организмов
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 14. Происхождение и эволюция человека
- •14.1. Положение человека в системе животного мира
- •14.2. Предшественники человека
- •14.3. Этапы эволюции человека
- •14.4. Факторы антропогенеза
- •14.5. Человеческие расы
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Экосистемы
- •Глава 15. Основы экологии
- •15.1. Организм и среда. Экологические факторы
- •15.1.1. Абиотические факторы
- •15.1.2. Биотические факторы
- •15.2. Популяция и окружающая среда
- •15.2.1. Регуляция плотности популяции. Емкость среды
- •15.2.2. Ареал обитания и экологическая ниша
- •15.3. Экосистемы
- •15.3.1. Пространственная структура биогеоценоза
- •15.3.2. Функциональная структура биогеоценоза. Пищевые сети
- •15.4. Развитие экосистем
- •15.4.1. Экосистемы, создаваемые человеком
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Глава 16. Биосфера и человек
- •16.2. Биомасса
- •16.3. Поток энергии и круговорот веществ в биосфере
- •16.3.1. Превращение энергии в биосфере
- •16.3.2. Биогеохимические круговороты
- •16.4. Человек и окружающая среда
- •Задачи и упражнения
- •Задания для самостоятельной работы
- •Лабораторный практикум
- •1. Биология как наука. Методы научного познания
- •Лабораторная работа 1. Методы познания живой природы: микроскоп.
- •Лабораторная работа 2. Изучение под микроскопом разнообразия инфузорий и их движения
- •2.Клетка
- •Лабораторная работа 3. Приготовление микропрепарата листа элодеи наблюдение за движением цитоплазмы в клетках под влиянием факторов внешней среды
- •Лабораторная работа 4. Сравнение строения клеток прокариот (бактерии, ностока) и эукариот (растения, животного, гриба)
- •Лабораторная работа 5. Сравнение строения клеток одноклеточного и многоклеточного организмов (хламидомонады, листа элодеи, эпидермиса лука)
- •Лабораторная работа 6. Наблюдение плазмолиза и деплазмолиза в клетках эпидермиса лука
- •Лабораторная работа 7. Исследование проницаемости растительных клеток
- •Лабораторная работа 8. Выявление активности процесса фотосинтеза с помощью пероксида водорода и фермента каталазы, содержащейся в клетках зеленых растений элодеи, хлорофитума и колеуса
- •Лабораторная работа 9. Обнаружение органических веществ в тканях растений (крахмала, белков, жира)
- •3.Организм
- •Лабораторная работа 10. Изучение результатов искусственного отбора - разнообразия сортов растений и пород животных
- •I вариант
- •II вариант
- •III вариант
- •Лабораторная работа 11. Выявление особенностей сорта у растений на примере сенполии (узамбарской фиалки) и плодов яблонь разных сортов
- •Лабораторная работа 12. Выявление признаков изменчивости организмов
- •I вариант
- •II вариант
- •III вариант
- •Лабораторная работа 13. Морфологическое описание одного вида растений
- •Обобщенная схема форм листьев
- •Лабораторная работа 14. Изучение морфологического критерия вида
- •5.Экосистемы
- •Лабораторная работа 15. Определение пылевого загрязнения воздуха в помещении и на улице
- •Оценка состояния окружающей среды по реакции живых организмов (биоиндикация)
- •Лабораторная работа 16. Определение химического загрязнения атмосферного воздуха с помощью лишайников (лихеноиндикация)
- •Оценка экологического состояния водных объектов
- •Лабораторная работа 17. Определение загрязнения воды в водоеме
- •Лабораторная работа 18. Исследование водозапасающей способности зеленых и сфагновых мхов
- •Лабораторная работа 19. Наблюдение за передвижением животных: инфузории туфельки, дождевого червя, улитки, аквариумной рыбки. Выявление поведенческих реакций животных на факторы внешней среды
- •Лабораторная работа 20. Оценка экологического состояния парка (газона)
- •Лабораторная работа 21. Изучение моделей геометрического и логистического роста популяций
- •Задание 1. Изучение модели геометрического роста популяции
- •Задание 2. Изучение модели логистического роста популяции
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.2. Методические рекомендации преподавателю
- •3.3. Методические указания для обучающихся
- •4. Материально-техническое обеспечение дисциплины
- •5. Программое обеспечение использования современных информационно-коммуникационных технологий
- •Поволжский государственный университет сервиса
- •445677, Г. Тольятти, ул. Гагарина, 4.
12.1.2. Мутагенез и полиплоидия
В естественных условиях частота мутирования генов сравнительно невелика. Индуцированный (искусственно вызванный) мутагенез открывает широкие возможности создания ценного исходного материала для селекции, повышения частоты возникновения наследственных изменений признаков и спектра их наследственной изменчивости. Повышения количества мутаций постигают воздействием на организм различными мутагенами (ультрафиолетовые лучи, ионизирующее излучение, некоторые химические вещества). Мутации в целом не носят направленного характера, селекционер отбирает и культивирует организмы с интересующими его признаками.
Значительное место в селекции растений отводят получению полиплоидных форм, так как они характеризуются большей урожайностью. В основе возникновения полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках; слияние соматических клеток или их ядер; нарушение процесса мейоза, приводящее к образованию гамет с нередуцированным числом хромосом. Искусственно полиплоидию можно вызвать путем обработки семян или проростков растений, яйцеклеток или эмбрионов животных колхицином.
Колхицин разрушает нити митотического веретена и тем самым препятствует расхождению гомологичных хромосом в процессе мейоза. Полиплоиды могут также образовываться от скрещивания организмов, принадлежащих к разным видам. Так, отечественным генетиком Г.Д. Карпеченко был выведен плодовитый гибрид капусты и редьки. Число хромосом у этих Растений одинаково (2n=18). Однако они принадлежат к разным Родам и межвидовой гибрид был бесплодным, так как родительские ромосомы негомологичны друг другу, не конъюгируют при мейозе затем нормально не расходятся в гаметы. При искусственном Удвоений хромосомного набора гибрида (2n = 36; по 18 от каждого одного вида) плодовитость восстанавливалась.
12.1.3. Клеточная и генная инженерия
Работа по изменению генотипа растений или животных с помощью скрещивания ограничена пределами либо вида, либо в видовом отношении организмов. Напротив, методы и генной инженерии стирают межвидовые барьеры, обеспечивая возможность создавать организмы с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств.
Методы клеточной инженерии позволяют гибридизировать соматические клетки, культивируемые на искусственных средах вне организма, не только между собой, но и с клетками животных другого вида. Например, гибридизируют клетки человека и мыши. Для изучения закономерностей функционирования дифференцированных клеток пересаживают ядра из соматических клеток в яйцеклетки с предварительно удаленными ядрами. Образуют также гибриды между раковыми и нормальными клетками. Удается не только слияние соматических клеток, но и реконструкция целых клеток из их отдельных частей. Можно, обрабатывая клетки специальными веществами, получать свободные ядра и цитоплазму. Свободные ядра и цитоплазма поддаются перекомбинированию, так что получаются реконструированные клетки.
Методы клеточной инженерии используют в генетике растений. Так, широко применяют методику слияния протопластов (клеток, лишенных своих оболочек при ферментативной обработке). Этот способ гибридизации позволяет преодолеть не только межвидовые, но и межродовые препятствия нескрещиваемости. Однако такая гибридизация имеет смысл, если она приводит к развитию полноценного организма. В 1978 г. на основе этой техники был получен гибрид картофеля и томата, но само растение так и осталось в лабораториях ввиду своей стерильности.
В культуре тканей возможно получение растений из зерен пыльцы и яйцеклеток, что позволяет получить гаплоидные особи. Такие растения не могут образовывать гаметы, однако обработка колхицином дает диплоидные плодовитые формы. Приведенный метод позволяет получить чистые линии всего за несколько месяцев вместо нескольких лет при инбридинге.
Метод вегетативного размножения в пробирке (in vitro) позволяет бесконечно размножать одно растение из кусочков его стебля, почки и т.д. Этот метод применим для овощных культур, плодовых деревьев, декоративных растений и т.д.
Приведенные примеры реконструкции и искусственного культивирования клеток далеко не исчерпывают всех возможностей клеточной инженерии, однако они демонстрируют открывающиеся перспективы как для изучения биологии клетки, так и для разработки новых биотехнологических методов, имеющих значение для народного хозяйства и медицины.
Генная инженерия – совокупность методов манипулирования нуклеиновыми кислотами in vitro. Задача этих методов состоит в получении индивидуальных генов или генетических структур и введении их в новое генетическое окружение с целью создания организма с новыми, заранее предопределенными признаками. Основные этапы создания генетически измененных организмов следующие: получение гена, кодирующего интересующий признак; его объединение с вектором (молекулой ДНК, способной к репликации в клетке-реципиенте); введение вектора с интересующим геном в клетку-реципиент и создание условий для наследования и экспрессии гена; отбор клеток, получивших дополнительный генетический признак, и практическое их использование.
В настоящее время представляется возможным выделить следующие задачи, стоящие перед генной инженерией:
1. Создание новых форм организмов, полезных человеку. Методами генной инженерии осуществлен синтез биологически активных веществ и препаратов в трансформированных клетках бактерий и низших эукариот. Такими веществами могут быть гормоны, ферменты, интерферон, иммуноглобулины, вакцины и т.п. Первые результаты в этом направлении уже получены (инсулин, гормон роста, интерферон и др.).
2. Культивирование генов больных и здоровых людей в клетках других организмов с целью изучения молекулярных основ наследственных заболеваний человека и разработки новых методов их лечения. В будущем, видимо, речь может идти прежде всего об исправлении повреждений отдельных генов. В настоящее время это направление еще не получило должного развития в силу больших методических трудностей.