
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
7. Грубые погрешности и методы их исключения
7.1. Понятие о грубых погрешностях
Грубая погрешность, или промах, — это погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Источником грубых погрешностей нередко бывают ошибки, допущенные оператором во время измерений. К ним можно отнести:
неправильный отсчет по шкале измерительного прибора, происходящий из-за неверного учета цены малых делений шкалы;
неправильная запись результата наблюдений, значений отдельных мер использованного набора, например Гирь.
Грубые погрешности, как правило, возникают при однократных измерениях и обычно устраняются путем повторных измерений. Их причинами могут быть внезапные и кратковременные изменения условий измерения или оставшиеся незамеченными неисправности в аппаратуре.
Корректная статистическая обработка выборки возможна только при ее однородности, т.е. в том случае, ко-1 на псе ее члены принадлежат к одной и той же генеральной совокупности. В противном случае обработка данных бессмысленна. «Чужие» отсчеты по своим значениям могут существенно не отличаться от «своих» отсчетов. Их можно обнаружить только по виду гистограмм или дифференциальных законов распределения. Наличие таких аномальных отсчетов принято называть загрязнениями выборки, однако выделить члены выборки, принадлежащие каждой из генеральных совокупностей, практически невозможно.
Е
сли
«свои» и «чужие» отсчеты
различаются по
значениям, то их исключают
из выборки (рис.7.1, а). Особую
неприятность
доставляют отсчеты,
которые хотя и не
входят в компактную группу основной
массы отсчетов
выборки, но и не
удалены от нее на значительное
расстояние, —
так называемые предполагаемые
промахи (рис.
7.1, б). Отбрасывание
«слишком» удаленных
от центра выборки
отсчетов называется цензурированием
выборки.
Это осуществляется с помощью специальных критериев.
7.2. Критерии исключения грубых погрешностей
При однократных измерениях обнаружить промах не представляется возможным. Для уменьшения вероятности появления промахов измерения проводят два-три раза и за результат принимают среднее арифметическое полученных отсчетов. При многократных измерениях для обнаружения промахов используют статистические критерии, предварительно определив, какому виду распределения соответствует результат измерений.
Вопрос о том, содержит ли результат наблюдений грубую погрешность, решается общими методами проверки статистических гипотез. Проверяемая гипотеза состоит в утверждении, что результат наблюдения хi не содержит грубой погрешности, т.е. является одним из значений измеряемой величины. Пользуясь определенными статистическими критериями, пытаются опровергнуть выдвинутую гипотезу. Если это удается, то результат наблюдений рассматривают как содержащий грубую погрешность и его исключают.
Для выявления грубых погрешностей задаются вероятностью q — уровнем значимости того, что сомнительный результат действительно мог иметь место в данной совокупности результатов измерений.
Критерий «трех
сигм» применяется
для результатов измерений,
распределенных по нормальному закону.
По •тому критерию
считается, что результат, возникающий
с вероятностью q ≤
0,003, мало вероятен и его можно считать
промахом, если
,
где Sx
— оценка СКО измерений. Величины
и Sх вычисляют без
учета экстремальных
значений хi.
Данный критерий надежен при числе
измерений n ≥ 20...50.
Это правило обычно считается слишком жестким, шитому рекомендуется [4] назначать границу цензурирования в зависимости от объема выборки:
при 6 < n ≤, 100 они равна 4Sх; при 100 < n ≤. 1000 — 4,5Sх; при 1000 < n ≤ 10000 — 5Sх. Данное правило также используется только при нормальном распределении.
Критерий Романовского применяется в случае, если число измерений n<20. При этом вычисляется отношение |( -хi)/Sx| =β и сравнивается с критерием βт, выбранным по табл. 7.1. Если β≥βт, то результат хi считается промахом и отбрасывается.
Таблица 7.1
Уровень значимости βт = f(n)
Вероятность q |
Число измерений |
||||||
п=4 |
п=6 |
п=8 |
п=10 |
п=12 |
п=15 |
п=20 |
|
0,01 0,02 0,05 0,10 |
1,73 1,72 1,71 1.69 |
2,16 2,13 2,10 2.00 |
2,43 2,37 2,27 2.17 |
2,62 2,54 2,41 2.29 |
22,75 2,66 2,52 2,39 |
2,90 2,80 2,64 2,49 |
3,08 2,96 2,78 2,62 |
Вариационный критерий Диксона — удобный и достаточно мощный (с малыми вероятностями ошибок). При его применении полученные результаты наблюдений записывают в вариационный возрастающий ряд xl, х2,..., хn (х1,<х2<... <хn).
Критерий Диксона определяется как
К.д=(хn-хn-1)/(хn –х1)
Критическая область для этого критерия Р (Кд > Zq) = q. Значения Zq помещены в табл. 7.2 [28].
Таблица 7.2