
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
6.2.3. Моменты распределений
Все моменты представляют собой некоторые средние значения, причем если усредняются величины, отсчитываемые от начала координат, то моменты называют начальными, а если — от центра распределения, то центральными. Начальные и центральные моменты r-го порядка определяются соответственно по формулам
Нулевой начальный момент равен единице. Он используется для задания условия нормирования плотности распределения:
С помощью начального момента нулевого порядка вводится понятие медианы распределения. Первый начальный момент является МО случайной величины.
Важное значение имеет второй центральный момент
называемый дисперсией и являющийся
характеристикой рассеивания
случайной величины относительного МО.
Значительно
чаще в качестве меры рассеивания
используется
среднее
квадратическое отклонение
,
имеющее такую
же размерность, как и МО. Для примера на
рис. 6.2 показан
вид нормального распределения при
различных значениях СКО.
Третий центральный момент
служит характеристикой асимметрии, или скошенности распределения. С его использованием вводится коэффициент асимметрии ν = μ3[Х]/σ3. Для нормального распределения коэффициент асимметрии равен нулю. Вид законов распределения при различных значениях коэффициента асимметрии приведен на рис. 6.3, а.
Ч
етвертый
центральный момент
служит для характеристики плоско- или островершинности распределения. Эти свойства описываются с помощью эксцесса
ε = μ4 [Х]/σ4 (6.3)
Его значения лежат в диапазоне от 1 до да. Для нормального распределения £ = 3. Вид дифференциальной функции распределения при различных значениях эксцесса показан на рис. 6.3, б.
Для удобства часто
используют контрэксцесс
Значения контрэксцесса лежат в
пределах от 0 до 1. Для нормального
распределения % = 0,577.
6.3. Основные законы распределения
Множество законов распределения случайных величин, используемых в метрологии, целесообразно классифицировать [4] следующим образом:
трапецеидальные (плосковершинные);
экспоненциальные;
семейство распределений Стьюдента;
двухмодальные.
К трапецеидальным распределениям (рис. 6.4) относятся: равномерное, собственно трапецеидальное и треугольное (Симпсона).
Математическое ожидание всех трапецеидальных распределений
Хц=(х1+х2)/2. Медианы из соображений симметрии равны МО. Равномерное и собственно трапецеидальное распределения моды не имеют, а мода треугольного равна 1/а.
Среднее квадратическое отклонение в зависимости от распределения вычисляется по формуле:
для равномерного распределения
для трапецеидального —
для треугольного распределения
Коэффициент асимметрии всех трапецеидальных распределений равен нулю.
Экспоненциальные распределения описываются формулой [4]
(6.5)
где
;
σ - СКО; α - некоторая характерная для
данного распределения константа; Хц
— координата центра; Г(х) — гамма-функция.
В нормированном виде, т.е. при Хц
= 0 и αλ = 1,
где А(α) — нормирующий множитель распределения.
Эксцесс экспоненциальных распределений определяется по формуле:
Таблица 6.1