
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
6. Случайные погрешности
6.1. Вероятностное описание случайных погрешностей
Из теории вероятностей известно, что наиболее универсальным способом описания случайных величин является отыскание их интегральных или дифференциальных функций распределения. Интегральной функцией распределения F(x) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина хi в i-м опыте принимает значение, меньшее х:
F(x) = Р{xi<x} = Р{-∞<xi ≤x}. (6.1)
График интегральной функции распределения показан на рис. 6.1. Она имеет следующие свойства:
неотрицательная, т. е. F(x) > 0;
неубывающая, т. е. F(x2) ≥F(x1), если х2 ≥ х1;
диапазон ее изменения простирается от 0 до 1, т.е. F(-∞) = 0; F(+∞)=l;
вероятность нахождения случайной величины х в диапазоне от х1 до х2 Р {х1 < х < х2} = F(x2) - F(x1).
Более наглядным является описание свойств результатов измерений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей р(х) = dF(x)/dx. Она всегда неотрицательна и подчиняется условию нормирования в виде
Учитывая взаимосвязь F(x) и р(х), легко показать, что вероятность попадания случайной величины в заданный интервал (х,; х2)
С
ледовательно,
рассмотренное выше условие нормирования
означает, что вероятность попадания
величины х в интервал
[-∞; +∞] равна
единице, т.е.
представляет собой достоверное
событие.
Из последнего уравнения следует, что вероятность попадания случайной величины х в заданный интервал (х1; x2) равна площади, заключенной под кривой р(х) между абсциссами х1 и х2 (см. рис. 6.1). Поэтому по форме кривой плотности вероятности р(х) можно судить о том, какие значения случайной величины х наиболее вероятны, а какие менее.
6.2. Числовые параметры законов распределения
6.2.1. Общие сведения
Как отмечалось выше, функции распределения являются самым универсальным способом описания поведения результатов измерений и случайных погрешностей. Однако для их определения необходимо проведение весьма длительных и кропотливых исследований и вычислений. В большинстве случаев бывает достаточно охарактеризовать случайные величины с помощью ограниченного числа специальных параметров, основными из которых являются:
центр распределения;
начальные и центральные моменты и производные от них коэффициенты — математическое ожидание (МО), СКО, эксцесс, контрэксцесс и коэффициент асимметрии.
6.2.2. Понятие центра распределения
Координата центра распределения определяет положение случайной величины на числовой оси и может быть найдена несколькими способами. Наиболее фундаментальным является отыскивание центра по принципу симметрии, т. е. такой точки Хм на оси х, слева и справа от которой вероятности появления различных значений случайной величины одинаковы и равны 0,5:
Точку Хм называют медианой, и 50%-ным квантилем. Для его нахождения у распределения случайной величины должен существовать только нулевой начальный момент.
Можно определить центр распределения как центр тяжести распределения, т. е. такой точки X , относительно которой опрокидывающий момент геометрической фигуры, огибающей которой является кривая р(х), равен нулю:
Эта точка называется математическим ожиданием. Следует отметить, что у некоторых распределений, например распределения Коши, не существует МО, так как определяющий его интеграл расходится.
При симметричной кривой р(х) в качестве центра может использоваться абсцисса моды, т.е. максимума распределения Хm. Однако существуют распределения, у которых нет моды, например равномерное. Распределения с одним максимумом называются одномодальными, с двумя — двухмодальными и т.д. Те из них, у которых в средней части расположен не максимум, а минимум, называются антимодальными.
Для двухмодальных распределений применяется оценка центра в виде центра сгибов:
Хс=(хс1+хс2)/2,
где xc1, хс2 — сгибы, т. е. абсциссы точек, в которых распределение достигает своих максимумов.
Для ограниченных распределений применяется оценка в виде центра размаха;
Хp = (х1+х2)/2,
где х1 х2 — первый и последний члены вариационного ряда, соответствующего распределению.
Разные оценки центра имеют различную эффективность. При статистической обработке экспериментальных данных важно использовать наиболее эффективную из них, т. е. оценку, имеющую минимальную дисперсию. Это связано с тем, что погрешность в определении Хц влечет за собой неправильную оценку СКО, границ доверительного интервала, эксцесса, контрэксцесса, вида распределения [4].
При выборе оценки центра распределения необходимо принимать во внимание ее чувствительность к наличию промахов в обрабатываемой совокупности исходных данных. Оценка в виде центра размаха Хр исключительно чувствительна к наличию промахов, так как она определяется по наиболее удаленным от центра наблюдениям, каковыми и являются промахи. Оценка в виде среднего арифметического также слабо защищена от влияния промахов. Оно ослабляется лишь в раз, где n — число наблюдений, в то время как его возможный размер ничем не ограничен. Защищенными от влияния промахов являются лишь квантильные оценки, т.е. медиана Хм и центр сгибов Xc, поскольку они не зависят от координат промахов.