
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
4.3. Математические модели и характеристики погрешности
В общем случае результаты измерений и их погрешности должны рассматриваться как функции, изменяющиеся во времени случайным образом, т.е. случайные функции, или, как принято говорить в математике, случайные процессы. Поэтому математическое описание результатов и погрешностей измерений (т.е. их математические модели) должно строиться на основе теории случайных процессов [24, 25]. Без этого невозможно решение большого числа практических метрологических задач.
При построении математической модели погрешности измерений следует учитывать всю информацию о проводимом измерении и его элементах. Для измерений, проводимых различными методами и средствами, модели могут существенно различаться.
В общем случае абсолютную погрешность измерения ∆(t) следует представлять [7, 26] в виде суммы нескольких составляющих:
Каждая из них может быть обусловлена действием нескольких различных источников погрешностей и в свою очередь состоять также из некоторого числа составляющих.
Систематическая составляющая
s(t)
представляет собой
нестационарную случайную функцию,
описывающую постоянную или
инфранизкочастотную погрешность,
причины возникновения которой могут
быть различными. Периоды изменения
составляющих систематической
погрешности значительно больше времени,
необходимого
для проведения измерения. Поэтому
погрешность
s(t)
условно принимается за постоянную и
для ее учета
применяются математические методы,
разработанные
для неизменных во времени и от измерения
к измерению
погрешностей, значения которых неизвестны.
Составляющая
является случайной и имеет широкий
частотный спектр. Периоды изменения
составляющих этой погрешности
меньше или сравнимы со временем
измерения. Она может быть разделена на
две составляющие:
,
которые являются стационарными
случайными функциями времени, с
различными
частотными спектрами — высокочастотным
и низкочастотным соответственно.
Автокорреляционная функция высокочастотной
составляющей погрешности затухает
в течение времени, значительно меньшего
времени
измерения. Для низкочастотной составляющей
автокорреляционная функция затухает
до нуля в течение времени,
большего времени отдельного измерения.
Такое различие
в поведении этих составляющих
обуславливает
их выделение и применение к ним различных
методик обработки.
Составляющая
является центрированной случайной
величиной, не зависящей от времени, но
изменяющейся от измерения к
измерению. Величины
и
могут быть объединены в одну стационарную
центрированную функцию
.
Ее автокорреляционная функция затухает
на интервале времени, который меньше
времени проведения всего измерения, но
существенно
больше интервала времени, необходимого
для одного измерения. В связи с этим
математическая модель погрешности
измерения может быть записана в виде
Отдельные составляющие этого уравнения могут отсутствовать при моделировании погрешности конкретного измерения. Так, зачастую нет необходимости учитывать высокочастотную составляющую погрешности измерения.
Эффективное использование рассмотренной модели погрешности измерения возможно только при известном частотном спектре ее составляющих. Однако данное условие, весьма трудно выполнить на практике, поэтому часто случайная погрешность измерения описывается не случайной функцией, а представляется еще более упрощенно — в виде случайной величины. В этом случае для описания погрешностей используются теория вероятностей и математическая статистика. Однако прежде необходимо сделать ряд существенных оговорок [4]:
применение методов математической статистики к обработке результатов измерений правомочно лишь в предположении о независимости между собой отдельных получаемых отсчетов;
большинство используемых в метрологии формул теории вероятностей правомерны только для непрерывных распределений, в то время как распределения погрешностей вследствие неизбежного квантования отсчетов, строго говоря, всегда дискретны, т. е. погрешность может принимать лишь счетное множество значений.
Таким образом, условия непрерывности и независимости для результатов измерений и их погрешностей соблюдаются приближенно, а иногда и не соблюдаются. В математике под термином «непрерывная случайная величина» полагают существенно более узкое, ограниченное рядом условий понятие, чем «случайная погрешность» в метрологии.
С учетом этих ограничений процесс появления случайных погрешностей результатов измерений за вычетом систематических и прогрессирующих погрешностей обычно может рассматриваться как центрированный стационарный случайный процесс. Его описание возможно на основе теории статистически независимых случайных величин и стационарных случайных процессов