
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
2.5. Классификация измерений
Обоснованная классификация любых объектов представляет собой их условное группирование по заданным признакам, осуществляемое с определенной целью. При различных целях одни и те же объекты могут быть классифицированы по-разному. Классификация не является самоцелью, она диктуется потребностями теории и практики. Целесообразность классификации измерений обуславливается удобством при разработке методик их выполнения и обработки результатов.
Измерения могут быть классифицированы по ряду признаков.
Классификация по общим приемам получения результатов измерений. Согласно этому признаку измерения делятся на прямые, косвенные, совокупные и совместные. Целью такого деления является удобство выделения методических погрешностей измерений, возникающих при определении результатов измерений.
Прямыми называются измерения, при которых искомое значение величины находят непосредственно по показаниям СИ. Например, весов — при измерении массы, термометра — при измерении температуры, вольтметра — при измерении напряжения.
Косвенными называются измерения, при которых значение измеряемой величины находят на основании результатов прямых измерений других ФВ, функционально связанных с искомой величиной. В общем случае зависимость, связывающую измеряемую величину Y и величины Х1, Х2,..., Хn, подвергаемые прямым измерениям, можно представить в виде
Y = F(X1,X2,...,Xn). (2.2)
Вид этой связи определяет методику расчета погрешностей косвенных измерений.
В современных микропроцессорных измерительных приборах очень часто вычисления искомой измеряемой величины производятся «внутри» прибора. В этом случае результат измерения определяется способом, характерным для прямых измерений, и нет необходимости и возможности отдельного учета методической погрешности расчета. Она входит в погрешность измерительного прибора. Измерения, проводимые такого рода средствами измерений, относятся к прямым. К косвенным относятся только такие измерения, при которых расчет осуществляется вручную или автоматически, но после получения результатов прямых измерений. При этом имеется возможность учесть отдельно погрешности расчета. Характерным примером такого случая могут служить измерительные системы, для которых нормированы метрологические характеристики их компонентов по отдельности. Суммарная погрешность измерений рассчитывается по нормированным метрологическим характеристикам всех компонентов системы.
Совокупными называются проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. Совместными называются проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Как видно из приведенных определений, эти два вида измерений весьма близки друг к другу. В обоих случаях искомые значения находятся при решении системы уравнений, коэффициенты в которых получены путем прямых измерений. Отличие состоит в том, что при совокупных измерениях одновременно измеряются несколько одноименных величин, а при совместных — разноименных.
Классификация по характеристике точности. По этой классификации различают равноточные и неравноточные измерения.
Равноточными называются измерения какой-либо физической величины, выполненные одинаковыми по точности СИ и в одних и тех же условиях. Соответственно неравноточные измерения — это измерения какой-либо ФВ, выполненные различными по точности СИ и (или) в различных условиях. Методика обработки равноточных и неравноточных измерений различна. Результаты последних обрабатывают только в том случае, если невозможно получить результаты равноточных измерений.
Классификация по числу измерений в ряду измерений. Данная классификация предполагает разделение измерений на однократные и многократные. Однократные измерения — это измерения, выполненные один раз. Многократные измерения — измерение ФВ одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящий из ряда однократных измерений. Полученный при этом ряд измерений может быть обработан в соответствии с требованиями математической статистики.
Классификация по отношению к изменению измеряемой величины. Все измерения делятся на статические и динамические. Целью данной классификации является возможность принятия решения о том, нужно ли при конкретных измерениях учитывать скорость изменения измеряемой величины или нет. Погрешности, вызываемые влиянием скоростей изменения измеряемой величины, называются динамическими.
Статические измерения — это измерения ФВ, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Динамические измерения — это измерения изменяющейся по размеру ФВ. Признаком, по которому измерение должно быть отнесено к статическим или динамическим, является динамическая погрешность измерения в заданном диапазоне скоростей или частот изменений измеряемой величины и при данных динамических свойствах СИ.
Классификация в зависимости от метрологического назначения. Все измерения делятся на технические и метрологические. Технические измерения — это измерения, проводимые с помощью рабочих СИ. Метрологические измерения — это измерения, выполняемые при помощи эталонов с целью воспроизведения единиц ФВ для передачи их размера рабочим СИ. При их осуществлении в обязательном порядке производится учет погрешностей измерения, а при технических измерениях принимается наперед заданная погрешность, достаточная для решения данной практической задачи. Технические измерения являются наиболее массовым видом измерений.