
- •1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Нормативно-правовые основы метрологии
- •1.2.1. Правовые основы метрологии
- •1.2.2. Нормативные основы метрологии
- •1.3. Краткий очерк истории развития метрологии.
- •2. Основные представления теоритической
- •2.1. Физические свойства и величины
- •2.1.1. Понятие о физической величине
- •2.1.2. Шкалы измерений
- •2.2. Измерение и его основные операции.
- •2.3. Элементы процесса измерений
- •Номинальные значения влияющих величин
- •2.4. Основные этапы измерений
- •2.5. Классификация измерений
- •2.6. Понятие о испытании и контроле
- •3. Теория воспроизведения единиц физических величин и передачи их размеров
- •3.1. Системы физических величин и их единиц
- •Основные и дополнительные единицы фв системы си
- •Произвольные единицы системы си, имеющие специальное название
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
- •3.2. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Стандартные образцы
- •4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешности
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерения
- •5. Система погрешности
- •5.1. Система погрешности и их классификации
- •5.2. Способы обнаружения и устранения систематических погрешностей
- •Значения критерия Аббе νq
- •6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.3. Основные законы распределения
- •Значения параметров экспоненциальных распределений при различных значениях показателя α
- •Значения точечных оценок распределения Стьюдента при различных степенях свободы
- •6.4 Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал.
- •7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Значения критерия Диксона
- •8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1.1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •Погрешность результата косвенных измерений ∆(р)
- •Зависимость kр [θ(р)/ s( )]
- •9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей.
- •9.2.Суммирование систематических погрешностей.
- •Зависимость коэффициента k от доверительной вероятности и числа слагаемых
- •Значение коэффициента k при различном отношении с границ составляющих систематической погрешности при доверительной вероятности 0,99
- •9.3. Суммирование случайных погрешностей.
- •9.5.Критерий ничтожно малой погрешности
- •10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных процессов.
- •10.6. Интегральные параметры периодического сигнала.
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений j
- •11.6 Комплексные средства измерений
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Расчет измерительных каналов средств измерений
- •12. Метрологические характеристики средств измерений и их нормирование
- •12.1. Принципы выбора и нормирования средств измерений
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики средств измерений
- •12.4. Характеристики чувствительности средств измерений к влияющим величинам. Неинформативные параметры выходного сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •Эквивалентные схемы замещения входных цепей электронных средств измерений
- •12.7.Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Классы точности средств измерений
- •13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •14.5 Метрологическая экспертиза
1. Предмет и задачи метрологии
1.1. Предмет метрологии
Определение метрологии дано в Рекомендации РМГ 29-99 «ГСИ. Метрология. Основные термины и определения»: метрология – наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности. Греческое слово «метрология» образованно от слов «метрон» - мера и «логос».
Предметом метрологии является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью. Средства метрологии – это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.
Метрология делится на три раздела, основным из которых является «Теоретическая метрология», занимающаяся изучением фундаментальных вопросов теории измерений. Структура данного раздела показана на рис. 1.1. Второй раздел - «Прикладная (практическая) метрология» - посвящен изучению вопросов практического применения разработок теоретической метрологии и положений законодательной метрологии. В ее ведении находятся все вопросы метрологического обеспечения (см. гл. 14). В заключительном разделе «Законодательная метрология» рассматривается установление обязательных технических и юридических требований по применению единиц ФВ, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимой точности измерений в интересах общества. Отдельные аспекты законодательной метрологии рассмотрены в параграфе 1.2.
Академик Б.М. Кедров предложил [19] так называемый «треугольник наук» как основу их классификации с вершинами: естественные, социальные и философские. По этой классификации метрология попадает на сторону «естественные — социальные науки». Это связано с тем, что социальная значимость результатов, получаемых метрологией, очень велика. Правомерно помещение метрологии и на стороне «естественные — философские науки». Это обусловлено ее значением.
Основное понятие метрологии — измерение. Согласно РМГ 29-99 измерение ФВ — это совокупность операций по применению технического средства, хранящего единицу ФВ, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины. Значимость измерений выражается в трех аспектах: философском, научном и техническом.
Теоретическая метрология
Основные понятия
и термины
Основные
представления метрологии средств
измерений
Постулаты
Учение о физических
величинах
Методология
измерений
Теория единиц
физических величин
Теория единства
(теория воспроизведения единиц физических
величин и передачи их размеров
Теория исходных
средств измерений (эталонов)
Теория передачи
размеров единиц физических величин
Средства измерений
Теория построения
средств измерений
Методы измерений
Теория погрешностей
средств измерений
Теория погрешностей
измерений
Принципы и методы
нормирования и определения метрологических
характеристик средств измерений
Теория точности
средств измерений
Теория метрологической
надежности средств измерений
Теория точности
измерений
Теория методов
измерений
Методы обработки
результатов измерений
Теория измерительных
процедур
Теория планирования
измерений
Анализ предельных
возможностей измерений
Рис.1.1.Структура теоретической метрологии
Философский аспект состоит в том, что измерения являются важнейшим универсальным методом познания физических явлений и процессов. В этом смысле метрология занимает особое место среди наук. Возможность измерения обуславливается предварительным изучением заданного свойства объекта измерений, построением абстрактных моделей как самого свойства, так и его носителя — объекта измерения в целом. Поэтому место измерения в познании определяется среди не первичных (теоретических или эмпирических) методов познания, а вторичных (квантитативных). С помощью вторичных познавательных процедур решаются задачи фиксации результатов познания. Измерение в этом смысле представляет собой кодирование сведений, получаемых различными методами познания, т.е. заключительную стадию процесса познания, связанную с регистрацией получаемой информации.
Научный аспект измерений состоит в том, что посредством измерений в науке осуществляется связь теории и практики. Без измерений невозможна проверка научных гипотез и соответственно развитие науки.
Измерения обеспечивают получение количественной информации об объекте управления или контроля, без которой нельзя точно воспроизвести все заданные условия технического процесса, обеспечить высокое качество изделий и эффективного управления объектом. Все это составляет технический аспект измерений.