- •Введение
- •1. Основные задачи теории информационных систем
- •1.1. Краткая историческая справка
- •1.2. Основные понятия теории систем
- •1.3. Выбор определения системы
- •2. Основные понятия и определения
- •2.1. Понятие информации
- •2.2. Открытые и закрытые системы
- •2.3. Модель и цель системы
- •2.4. Управление
- •2.5. Информационные динамические системы
- •2.6. Классификация и основные свойства единиц информации
- •2.7. Системы управления
- •2.8. Реляционная модель данных
- •3. Виды информационных систем
- •3.1. Классификация информационных систем
- •3.2. Технические, биологические и др. Системы
- •3.3. Детерминированные и стохастические системы
- •3.4. Открытые и закрытые системы
- •3.5. Хорошо и плохо организованные системы
- •3.6. Классификация систем по сложности
- •4. Закономерности систем
- •4.1. Целостность
- •4.2. Интегративность
- •4.3. Коммуникативность
- •4.4. Иерархичность
- •4.4. Эквифинальность
- •4.5. Историчность
- •4.6. Закон необходимого разнообразия
- •4.7. Закономерность осуществимости и потенциальной эффективности систем
- •4.8. Закономерность целеобразования
- •4.9. Системный подход и системный анализ
- •5. Уровни представления информационных систем
- •5.1. Методы и модели описания систем
- •5.2. Качественные методы описания систем
- •5.3. Количественные методы описания систем
- •5.4. Кибернетический подход к описанию систем
- •6. Алгоритмы на топологических моделях
- •6.1. Задачи анализа топологии
- •6.2. Представление информации о топологии моделей
- •6.3. Переборные методы. Поиск контуров и путей по матрице смежности
- •6.4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •6.5. Поиск контуров и путей по матрице изоморфности
- •6.6. Сравнение алгоритмов топологического анализа
- •6.7. Декомпозиция модели на топологическом ранге неопределенности
- •6.8. Сортировка модели на топологическом ранге неопределенности
- •6.9. Нахождение сильных компонент графа
- •7. Теоретико-множественное описание систем
- •7.1. Предположения о характере функционирования систем
- •7.2. Система как отношение на абстрактных множествах
- •7.3. Временные, алгебраические и функциональные системы
- •7.4. Временные системы в терминах «вход — выход»
- •8. Динамическое описание систем
- •8.1. Детерминированная система без последствий
- •8.2. Детерминированные системы без последствия с входными сигналами двух классов
- •8.3. Учет специфики воздействий
- •8.4. Детерминированные системы с последствием
- •8.5. Стохастические системы
- •8.6. Агрегатное описание систем
- •8.7. Иерархические системы
- •9. Модели и методы принятия решений
- •9.1. Принятие решений. Что это такое?
- •9.2. Модели и методы принятия решений
- •9.3. Требования к методам принятия решений
- •10. Логистические системы
- •10.1. Концепция и философия логистики
- •10.2. Системный подход в логистике
- •10.3. Кибернетический подход
- •10.4. Классификация моделей логистической системы
- •10.5. Проблемы логистики на микро- и макроуровне
- •11. Числовые характеристики системы
- •11.1. Условия проведения расчетов
- •11.2. Математическое ожидание, мода, медиана
- •11.3. Моменты. Дисперсия. Среднее квадратическое отклонение
- •11.4. Расчет производительности информационной системы
- •11.5. Разделение уровней информационных систем
- •12. Основы теории информации
- •12.1. Предмет и задачи теории информации
- •12.2. Энтропия как мера степени неопределенности состояния физической системы
- •12.3. Энтропия сложной системы. Теорема сложения энтропий
- •12.4. Условная энтропия. Объединение зависимых систем
- •12.5. Энтропия и информация
- •12.6. Энтропия и информация для систем с непрерывным множеством состояний
- •12.7. Негэнтропия
- •12.8. Передача информации с искажениями. Пропускная способность канала с помехами
- •12.9. Вероятностная модель информационного морфизма информационных систем
- •12.10. Исследование и регулирование информационного морфизма систем с использованием матриц Александера
- •12.11. Элементарная семантическая единица – модуль информационного наполнения ис
- •12.12. Структурирование информационного наполнения ис и вводимые для описания этого процесса специальные термины
- •Заключение
- •Библиографический список
8.4. Детерминированные системы с последствием
Большой класс систем характеризуется тем, что для представления их состояния необходимо знать состояние системы на некотором множестве моментов времени.
z(t)= H{t,(tB0, z)t0, (t, xL]t0t, (t, uM]t0t },
{(t, t0)} {(tB0, z)t0} Z {(t, xL]T} Z.
Где {(tB0, z)t0} - семейство всевозможных состояний системы.
8.5. Стохастические системы
Системы, функционирующие под воздействием случайных факторов, называются стохастическими. Для их описания вводится случайный оператор:
- пространство элементарных событий с вероятностной мерой P(A).
Случайный оператор H1, переводящий множество X в множество Z:
z = H1(x, ), реализующий отображение множества в множество {XZ }.
Оператор переходов будет представлен соответственно:
z(t)= H1{t,t0,z(t0, 0), (t, xL]t0t, `},
y(t) = G1(t, z(t), `` ).
Где 0, ’, ’’ - выбираются из в соответствии с P0(A), Px(A), Py(A).
При фиксированных ’, ’’ - система со случайными начальными состояниями.
При фиксированных 0, ’’ - система со случайными переходами.
При фиксированных 0, ’ - система со случайными выходами.
8.6. Агрегатное описание систем
Агрегат - унифицированная схема, получаемая наложением дополнительных ограничений на множества состояний, сигналов и сообщений и на операторы перехода, а также выходов.
t T - моменты времени; x X - входные сигналы; u U - управляющие сигналы; y Y - выходные сигналы; z Z – состояния; x(t), u(t), y(t), z(t) - функции времени.
Агрегат – объект, определенный множествами T, X, U, Y, Z и операторами H и G, реализующими функции z(t) и y(t). Структура операторов H и G является определяющей для понятия агрегата.
Вводится пространство параметров агрегата b=(b1, b2, ...,bn) B.
Оператор выходов G реализуется как совокупность операторов G` и G``. Оператор G` выбирает очередные моменты выдачи выходных сигналов, а оператор G`` - содержание сигналов.
у=G``{t, z(t),u(t),b}.
В общем случае оператор G`` является случайным оператором, т.е. t, z(t), u(t) и b ставится в соответствие множеству y с функцией распределения G``. Оператор G` определяет момент выдачи следующего выходного сигнала.
Операторы переходов агрегата. Рассмотрим состояние агрегата z(t) и z(t+0).
Оператор V реализуется в моменты времени tn, поступления в агрегат сигналов xn(t). Оператор V1 описывает изменение состояний агрегата между моментами поступления сигналов.
z(t’n + 0) = V{ t’n, z(t’n), x(t’n), b}.
z(t) = V1(t, tn, z(t+0),b}.
Особенность описания некоторых реальных систем приводит к так называемым агрегатам с обрывающимся процессом функционирования. Для этих агрегатов характерно наличие переменной, соответствующей времени, оставшемуся до прекращения функционирования агрегата.
Все процессы функционирования реальных сложных систем, по существу, носят случайный характер, по этому в моменты поступления входных сигналов происходит регенерация случайного процесса. То есть развитие процессов в таких системах после поступления входных сигналов не зависит от предыстории.
Автономный агрегат – агрегат, который не может воспринимать входных и управляющих сигналов.
Неавтономный агрегат - общий случай.
Частные случаи агрегата:
Кусочно-марковский агрегат – агрегат, процессы в котором являются обрывающими марковскими процессами. Любой агрегат можно свести к марковскому.
Кусочно-непрерывный агрегат - в промежутках между подачей сигналов функционирует как автономный агрегат.
Кусочно-линейный агрегат: dzv(t)/dt = F(v)(zv).
Представление реальных систем в виде агрегатов неоднозначно, вследствие неоднозначности выбора фазовых переменных.
