
- •Введение
- •1. Основные задачи теории информационных систем
- •1.1. Краткая историческая справка
- •1.2. Основные понятия теории систем
- •1.3. Выбор определения системы
- •2. Основные понятия и определения
- •2.1. Понятие информации
- •2.2. Открытые и закрытые системы
- •2.3. Модель и цель системы
- •2.4. Управление
- •2.5. Информационные динамические системы
- •2.6. Классификация и основные свойства единиц информации
- •2.7. Системы управления
- •2.8. Реляционная модель данных
- •3. Виды информационных систем
- •3.1. Классификация информационных систем
- •3.2. Технические, биологические и др. Системы
- •3.3. Детерминированные и стохастические системы
- •3.4. Открытые и закрытые системы
- •3.5. Хорошо и плохо организованные системы
- •3.6. Классификация систем по сложности
- •4. Закономерности систем
- •4.1. Целостность
- •4.2. Интегративность
- •4.3. Коммуникативность
- •4.4. Иерархичность
- •4.4. Эквифинальность
- •4.5. Историчность
- •4.6. Закон необходимого разнообразия
- •4.7. Закономерность осуществимости и потенциальной эффективности систем
- •4.8. Закономерность целеобразования
- •4.9. Системный подход и системный анализ
- •5. Уровни представления информационных систем
- •5.1. Методы и модели описания систем
- •5.2. Качественные методы описания систем
- •5.3. Количественные методы описания систем
- •5.4. Кибернетический подход к описанию систем
- •6. Алгоритмы на топологических моделях
- •6.1. Задачи анализа топологии
- •6.2. Представление информации о топологии моделей
- •6.3. Переборные методы. Поиск контуров и путей по матрице смежности
- •6.4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •6.5. Поиск контуров и путей по матрице изоморфности
- •6.6. Сравнение алгоритмов топологического анализа
- •6.7. Декомпозиция модели на топологическом ранге неопределенности
- •6.8. Сортировка модели на топологическом ранге неопределенности
- •6.9. Нахождение сильных компонент графа
- •7. Теоретико-множественное описание систем
- •7.1. Предположения о характере функционирования систем
- •7.2. Система как отношение на абстрактных множествах
- •7.3. Временные, алгебраические и функциональные системы
- •7.4. Временные системы в терминах «вход — выход»
- •8. Динамическое описание систем
- •8.1. Детерминированная система без последствий
- •8.2. Детерминированные системы без последствия с входными сигналами двух классов
- •8.3. Учет специфики воздействий
- •8.4. Детерминированные системы с последствием
- •8.5. Стохастические системы
- •8.6. Агрегатное описание систем
- •8.7. Иерархические системы
- •9. Модели и методы принятия решений
- •9.1. Принятие решений. Что это такое?
- •9.2. Модели и методы принятия решений
- •9.3. Требования к методам принятия решений
- •10. Логистические системы
- •10.1. Концепция и философия логистики
- •10.2. Системный подход в логистике
- •10.3. Кибернетический подход
- •10.4. Классификация моделей логистической системы
- •10.5. Проблемы логистики на микро- и макроуровне
- •11. Числовые характеристики системы
- •11.1. Условия проведения расчетов
- •11.2. Математическое ожидание, мода, медиана
- •11.3. Моменты. Дисперсия. Среднее квадратическое отклонение
- •11.4. Расчет производительности информационной системы
- •11.5. Разделение уровней информационных систем
- •12. Основы теории информации
- •12.1. Предмет и задачи теории информации
- •12.2. Энтропия как мера степени неопределенности состояния физической системы
- •12.3. Энтропия сложной системы. Теорема сложения энтропий
- •12.4. Условная энтропия. Объединение зависимых систем
- •12.5. Энтропия и информация
- •12.6. Энтропия и информация для систем с непрерывным множеством состояний
- •12.7. Негэнтропия
- •12.8. Передача информации с искажениями. Пропускная способность канала с помехами
- •12.9. Вероятностная модель информационного морфизма информационных систем
- •12.10. Исследование и регулирование информационного морфизма систем с использованием матриц Александера
- •12.11. Элементарная семантическая единица – модуль информационного наполнения ис
- •12.12. Структурирование информационного наполнения ис и вводимые для описания этого процесса специальные термины
- •Заключение
- •Библиографический список
8. Динамическое описание систем
Функционирование сложной системы можно представить как совокупность двух функций времени: x(t) - внутреннее состояние системы; y(t) - выходной процесс системы. Обе функции зависят от u(t) - входного воздействия и от f(t) - возмущения.
Для каждого t T существует множество z Z.
Z=Z1 Z2 ... Zn - множество n - мерного пространства. Состояние системы z(t) - точка или вектор пространства Z с обобщенными координатами z1, z2, z3, z4, ....., zn.
U=T Z - фазовое пространство системы.
8.1. Детерминированная система без последствий
Детерминированная система без последствий – система, состояние которой z(t) зависит только от z(t0) и не зависит от z(0) ... z(t0), т.е. z(t) зависит от z(t0) и не зависит от того, каким способом система попала в состояние z(t0).
Для систем без последствия ее, состояние можно описать как,
z(t)= H{t,t0,z(t0), (t, xL]t0t},
где {(t, xL]t0t} - множество всевозможных отрывков входных сообщений, соответствующих интервалу (t0, t]; H - оператор переходов системы.
tT, t0T, z(t0) Z, (t, xL]t0t {(t, xL]t0t}.
Формальная запись отображения:
T T {(t, xL]t0t} Z.
Начальные условия H{t0, t0, z(t0), (t, xL]t0t0 } = z(t0).
Если (t, xL1]t0t = (t, xL2]t0t, то H{t0, t, z(t0), (t, xL1]t0t } = H{t0, t, z(t0), (t, xL2]t0t}
Если t0<t1<t2 и t0, t1, t2 T, то H{t0, t2, z(t0), (t, xL]t0t2 } = H{t2, t1, z(t1), (t, xL2]t1t2}, так как (t, xL]t0t2 есть сочленение отрезков (t, xL]t0t1 и (t, xL]t1t2.
Оператор выходов системы G реализует отношение
{(t, t0)} Z (t, xL)T} Y,
y(t) = G(t, t0, z(t0), (t, xL2]t0t).
(x, y) X Y - расширенное состояние системы.
Динамическая система без последствий (динамическая система Кламана) -упорядоченное множество (T, X, Z, Y, {(t, xL)T, H, G), удовлетворяющeе поставленным выше требованиям:
T является подмножеством действительных чисел;
{(t, xL)T}- множество отображений TX, удовлетворяющиx сочленению отрезков;
oператор переходов H реализует {(t, t0)} Z (t, xL)T} Y.
oператор выходов системы G задается видом y(t) = G(t, t0, z(t0), (t, xL2]t0t).
8.2. Детерминированные системы без последствия с входными сигналами двух классов
Расширение понятие системы идет по трем путям:
учет специфики воздействий;
учет последствий;
учет случайных факторов.
8.3. Учет специфики воздействий
Вводится понятие управляющих сигналов u U; u=M(t), или если сигнал u U описывается набором характеристик, U = U1 U2 UL.
Отличие от предыдущего случая то, что множество моментов времени tu и tx могут не совпадать.
Вводится расширенное множество X*= X U, таким образом, состояние системы описывается вектором x = (x, u) = (x1, x2, .... , xn, u1, u2, .... , uL).
С учетом этого предыдущие формулы приобретают вид,
операторов переходов:
z(t)= H{t,t0,z(t0), (t, xL, uM]t0t}, или
z(t)= H{t,t0,z(t0), (t, xL]t0t, (t, uM]t0t }, что соответствует отображению
T T {(t, xL]T} {(t, uM]T} Z.