- •Введение
- •1. Основные задачи теории информационных систем
- •1.1. Краткая историческая справка
- •1.2. Основные понятия теории систем
- •1.3. Выбор определения системы
- •2. Основные понятия и определения
- •2.1. Понятие информации
- •2.2. Открытые и закрытые системы
- •2.3. Модель и цель системы
- •2.4. Управление
- •2.5. Информационные динамические системы
- •2.6. Классификация и основные свойства единиц информации
- •2.7. Системы управления
- •2.8. Реляционная модель данных
- •3. Виды информационных систем
- •3.1. Классификация информационных систем
- •3.2. Технические, биологические и др. Системы
- •3.3. Детерминированные и стохастические системы
- •3.4. Открытые и закрытые системы
- •3.5. Хорошо и плохо организованные системы
- •3.6. Классификация систем по сложности
- •4. Закономерности систем
- •4.1. Целостность
- •4.2. Интегративность
- •4.3. Коммуникативность
- •4.4. Иерархичность
- •4.4. Эквифинальность
- •4.5. Историчность
- •4.6. Закон необходимого разнообразия
- •4.7. Закономерность осуществимости и потенциальной эффективности систем
- •4.8. Закономерность целеобразования
- •4.9. Системный подход и системный анализ
- •5. Уровни представления информационных систем
- •5.1. Методы и модели описания систем
- •5.2. Качественные методы описания систем
- •5.3. Количественные методы описания систем
- •5.4. Кибернетический подход к описанию систем
- •6. Алгоритмы на топологических моделях
- •6.1. Задачи анализа топологии
- •6.2. Представление информации о топологии моделей
- •6.3. Переборные методы. Поиск контуров и путей по матрице смежности
- •6.4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •6.5. Поиск контуров и путей по матрице изоморфности
- •6.6. Сравнение алгоритмов топологического анализа
- •6.7. Декомпозиция модели на топологическом ранге неопределенности
- •6.8. Сортировка модели на топологическом ранге неопределенности
- •6.9. Нахождение сильных компонент графа
- •7. Теоретико-множественное описание систем
- •7.1. Предположения о характере функционирования систем
- •7.2. Система как отношение на абстрактных множествах
- •7.3. Временные, алгебраические и функциональные системы
- •7.4. Временные системы в терминах «вход — выход»
- •8. Динамическое описание систем
- •8.1. Детерминированная система без последствий
- •8.2. Детерминированные системы без последствия с входными сигналами двух классов
- •8.3. Учет специфики воздействий
- •8.4. Детерминированные системы с последствием
- •8.5. Стохастические системы
- •8.6. Агрегатное описание систем
- •8.7. Иерархические системы
- •9. Модели и методы принятия решений
- •9.1. Принятие решений. Что это такое?
- •9.2. Модели и методы принятия решений
- •9.3. Требования к методам принятия решений
- •10. Логистические системы
- •10.1. Концепция и философия логистики
- •10.2. Системный подход в логистике
- •10.3. Кибернетический подход
- •10.4. Классификация моделей логистической системы
- •10.5. Проблемы логистики на микро- и макроуровне
- •11. Числовые характеристики системы
- •11.1. Условия проведения расчетов
- •11.2. Математическое ожидание, мода, медиана
- •11.3. Моменты. Дисперсия. Среднее квадратическое отклонение
- •11.4. Расчет производительности информационной системы
- •11.5. Разделение уровней информационных систем
- •12. Основы теории информации
- •12.1. Предмет и задачи теории информации
- •12.2. Энтропия как мера степени неопределенности состояния физической системы
- •12.3. Энтропия сложной системы. Теорема сложения энтропий
- •12.4. Условная энтропия. Объединение зависимых систем
- •12.5. Энтропия и информация
- •12.6. Энтропия и информация для систем с непрерывным множеством состояний
- •12.7. Негэнтропия
- •12.8. Передача информации с искажениями. Пропускная способность канала с помехами
- •12.9. Вероятностная модель информационного морфизма информационных систем
- •12.10. Исследование и регулирование информационного морфизма систем с использованием матриц Александера
- •12.11. Элементарная семантическая единица – модуль информационного наполнения ис
- •12.12. Структурирование информационного наполнения ис и вводимые для описания этого процесса специальные термины
- •Заключение
- •Библиографический список
7.3. Временные, алгебраические и функциональные системы
Временные системы. Если элементы одного из объектов системы есть функции, например v: ТvAv то этот объект называют функциональным. В случае, когда области определения всех функций для данного объекта V одинаковы, т. е. каждая функция vV является отображением Т в A, v : ТА, то Т называется индексирующим множеством для v, a A — алфавитом объекта Т. Если индексирующее множество линейно упорядочено, то его называют множеством моментов времени. Функции, определенные на множествах моментов времени, принято называть (абстрактными) функциями времени. Объект, элементами которого являются временные функции, называют временным объектом, а системы, определенные на временных объектах, — временными системами.
Алгебраические системы. Другой путь наделения объектов системы математическими структурами состоит в определении одной или нескольких операций, относительно которых V становится алгеброй. В самом простейшем случае определяется бинарная операция R : V*VV и предполагается, что в V можно выделить такое подмножество W, зачастую конечное, что любой элемент v V можно получить в результате применения операции R к элементам из W или к элементам, уже построенным из элементов множества неподобным образом. В этом случае W называют множеством производящих элементов или алфавитом объекта, а его элементы — символами, а элементы объекта V — словами. Если R есть операция сочленения, то слова — это просто последовательности элементов алфавита W.
Необходимо иметь в виду, что алфавит временного объекта — это не совсем то же самое, что алфавит алгебраического объекта. Для объектов с конечными алфавитами — это обычно одни и те же множества. Но как только алфавит становится бесконечным, возникают трудности: множество производящих элементов и область функций времени оказываются различными множествами, в общем случае даже разной мощности.
Итак, системой называется отношение на непустых (абстрактных) множествах:
Sx{Vi, iI}.
Если множество индексов конечно, то выражение (7.1) можно переписать в виде
SV1*V2*…*Vn. . (7.2)
П
Множество Х= {Vi. iIx,} называется входным объектом, а множество Y={Vi,iIy} - выходным объектом системы. Тогда система S определяется отношением
S X* У (7.3)
и называется системой «вход — выход» («черный ящик»).
Если S является функцией
S : XY, (7.4)
то система называется функциональной.
7.4. Временные системы в терминах «вход — выход»
Множество моментов времени. Первая часть первого предположения о характере функционирования систем гласит: система функционирует во времени. Множество моментов времени t, в которых рассматривается функционирование системы, обозначим Т, t Т. Множество T будем считать подмножеством множества действительных чисел. В частности, оно может быть конечным или счетным. В зависимости от характера множества Т различают: дискретное, непрерывное и дискретно-непрерывное время. На практике часто представляют интерес только такие множества Т, элементы которых располагаются в изолированных точках числовой оси. В этом случае говорят, что система функционирует в дискретном времени, например контактные схемы, конечные автоматы, вычислительные устройства ЭВМ и т. д. Вместо моментов времени t0, tl , ... часто пишут ряд натуральных чисел 0, 1,2, ..., которые называются тактами.
Множество Т представляет собой множество некоторого (конечного или бесконечного) интервала числовой оси. В этом случае говорят, что система функционирует в непрерывном времени, например механические и электрические системы, системы, рассматриваемые в теории автоматического регулирования, и т. д.
Не исключены случаи, когда множество Т имеет дискретно-непрерывный характер: на одних интервалах числовой прямой моменты t Т заполняют их целиком, а на других — располагаются в изолированных точках. Например: 1) метеорологическая ракета при нахождении в состоянии готовности функционирует в непрерывном времени, а при запуске (при работе автомата пуска) можно условно считать, что работает в дискретном времени (реле времени работает дискретно в смысле выдачи команд исполнительным органом по тактам); 2) процесс производства автомобилей на конвейере, конвейер движется непрерывно, а готовые автомобили сходят с него в дискретные моменты времени.
Входные сигналы системы. Второе и третье предположения о характере функционирования систем направлены на описание взаимодействия системы с внешней средой. На вход системы могут поступать входные сигналы хХ, где X — множество входных сигналов системы. Входной сигнал, поступивший в момент времени Т, обозначается x(t).
Возвратимся к примеру с выпуском предприятием однотипных изделий (часто их называют однопродуктовое производство). В такой системе готовность в момент t, i-ro изделия (автомобиля, часов, велосипеда, телевизора и т. д.) можно описать как поступление очередного сигнала x(tı) = 1. Здесь множество X состоит из одного элемента х=1. Если принять за Х=0 сигнал, когда очередное изделие не готово, а за Х=1, когда оно готово, то можно считать, что Х={0, 1} и в систему входной сигнал поступает в каждый момент tТ. В случае, когда в моменты tı оказываются готовыми одновременно несколько изделий (на заводе несколько конвейерных линий), например 0 xxmax, то множество X — совокупность целых чисел Х={О,1, ..., Хmax}.
Входные сигналы могут описываться некоторым набором характеристик. Например, если входными сигналами АСУ аэродромом считать самолеты, поступившие в зону аэродрома, то каждый из них может быть описан: 1) координатами точки взлета (I, a, ) (I-наклонная дальность, а - азимут и - угол места); 2) вектором скорости (I, а, ); 3) признаками, характеризующими тип самолета (V), массу груза (G), требованиями к аэродромному обслуживанию () и т. д.
В общем случае будем предполагать, что входной сигнал XıXi, где X — заданные множества (i= 1, n).
Прямое произведение X=XıX2.... Хn называется пространством входных сигналов. Xi - элементарные оси, входной сигнал х представляет собой точку пространства X, описываемую координатами x, x2, ..., хn. В общем случае Х Х.
При исследовании сложных систем приходится оперировать с группами входных сигналов, поступающих в моменты времени tl<t2<...<tk. Будем предполагать, что множеству X принадле
В общем случае расчета всех подсистем по неявной схеме эффект от декомпозиции можно оценить как:
,
где N - размерность исходной системы, - размерность i подсистемы, n - количество подсистем.
В случае моделирования выделенных подсистем по явной схеме расчета вычислительный эффект, связанный с повышением скорости вычислений можно оценить как:
,
где k - коэффициент быстродействия вычислений по неявной схеме, - время моделирования i-ой выделенной подсистемы данного уровня по явной схеме расчета. Причем из сравнения скоростей расчета по явным и неявным схемам известно что .
Переборный алгоритм, реализующий подобную декомпозицию, приведен на рис. 6.6. В блоках 1 и 2 обнуляются исходные списки элементов, вычисляемых по явной и неявной схеме соответственно. В блоке 3 происходит перенумерация номеров переменных. Критерий для сортировки номеров переменных устанавливается так, чтобы переменная на входе блока имела номер меньше, чем на выходе. Нарушение этого порядка означает наличие обратной связи.
В основном цикле по всем переменным рассматриваемой модели (блоки 4, 5 и 10), производится их разделение на два динамических списка.
В том случае, если относительно рассматриваемой переменной (вершины) обнаруживается замкнутый контур, (номер выходной переменой меньше чем номер входной переменной, или одной из входных переменных (блок 6)), то соответствующее уравнение присоединяется к части модели, рассчитываемой по неявной схеме (блок 8). В блоке 7, в случае разветвления, когда выходная переменная, являющаяся следствием этого уравнения присутствует в качестве причины сразу в нескольких уравнениях, производится дополнительный анализ на предмет необходимости рассчитывать и это уравнение по неявной схеме. Если это разветвление сводится к соединению эквивалентному последовательной цепи элементов, например элемент в приведенном на рис. 6.5 выделенном фрагменте (обозначенным как - f4), соответствующие это уравнение не требуется рассчитывать по неявной схеме, и оно “отправляется” в другой список (блок 9).
