
- •Введение
- •1. Основные задачи теории информационных систем
- •1.1. Краткая историческая справка
- •1.2. Основные понятия теории систем
- •1.3. Выбор определения системы
- •2. Основные понятия и определения
- •2.1. Понятие информации
- •2.2. Открытые и закрытые системы
- •2.3. Модель и цель системы
- •2.4. Управление
- •2.5. Информационные динамические системы
- •2.6. Классификация и основные свойства единиц информации
- •2.7. Системы управления
- •2.8. Реляционная модель данных
- •3. Виды информационных систем
- •3.1. Классификация информационных систем
- •3.2. Технические, биологические и др. Системы
- •3.3. Детерминированные и стохастические системы
- •3.4. Открытые и закрытые системы
- •3.5. Хорошо и плохо организованные системы
- •3.6. Классификация систем по сложности
- •4. Закономерности систем
- •4.1. Целостность
- •4.2. Интегративность
- •4.3. Коммуникативность
- •4.4. Иерархичность
- •4.4. Эквифинальность
- •4.5. Историчность
- •4.6. Закон необходимого разнообразия
- •4.7. Закономерность осуществимости и потенциальной эффективности систем
- •4.8. Закономерность целеобразования
- •4.9. Системный подход и системный анализ
- •5. Уровни представления информационных систем
- •5.1. Методы и модели описания систем
- •5.2. Качественные методы описания систем
- •5.3. Количественные методы описания систем
- •5.4. Кибернетический подход к описанию систем
- •6. Алгоритмы на топологических моделях
- •6.1. Задачи анализа топологии
- •6.2. Представление информации о топологии моделей
- •6.3. Переборные методы. Поиск контуров и путей по матрице смежности
- •6.4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •6.5. Поиск контуров и путей по матрице изоморфности
- •6.6. Сравнение алгоритмов топологического анализа
- •6.7. Декомпозиция модели на топологическом ранге неопределенности
- •6.8. Сортировка модели на топологическом ранге неопределенности
- •6.9. Нахождение сильных компонент графа
- •7. Теоретико-множественное описание систем
- •7.1. Предположения о характере функционирования систем
- •7.2. Система как отношение на абстрактных множествах
- •7.3. Временные, алгебраические и функциональные системы
- •7.4. Временные системы в терминах «вход — выход»
- •8. Динамическое описание систем
- •8.1. Детерминированная система без последствий
- •8.2. Детерминированные системы без последствия с входными сигналами двух классов
- •8.3. Учет специфики воздействий
- •8.4. Детерминированные системы с последствием
- •8.5. Стохастические системы
- •8.6. Агрегатное описание систем
- •8.7. Иерархические системы
- •9. Модели и методы принятия решений
- •9.1. Принятие решений. Что это такое?
- •9.2. Модели и методы принятия решений
- •9.3. Требования к методам принятия решений
- •10. Логистические системы
- •10.1. Концепция и философия логистики
- •10.2. Системный подход в логистике
- •10.3. Кибернетический подход
- •10.4. Классификация моделей логистической системы
- •10.5. Проблемы логистики на микро- и макроуровне
- •11. Числовые характеристики системы
- •11.1. Условия проведения расчетов
- •11.2. Математическое ожидание, мода, медиана
- •11.3. Моменты. Дисперсия. Среднее квадратическое отклонение
- •11.4. Расчет производительности информационной системы
- •11.5. Разделение уровней информационных систем
- •12. Основы теории информации
- •12.1. Предмет и задачи теории информации
- •12.2. Энтропия как мера степени неопределенности состояния физической системы
- •12.3. Энтропия сложной системы. Теорема сложения энтропий
- •12.4. Условная энтропия. Объединение зависимых систем
- •12.5. Энтропия и информация
- •12.6. Энтропия и информация для систем с непрерывным множеством состояний
- •12.7. Негэнтропия
- •12.8. Передача информации с искажениями. Пропускная способность канала с помехами
- •12.9. Вероятностная модель информационного морфизма информационных систем
- •12.10. Исследование и регулирование информационного морфизма систем с использованием матриц Александера
- •12.11. Элементарная семантическая единица – модуль информационного наполнения ис
- •12.12. Структурирование информационного наполнения ис и вводимые для описания этого процесса специальные термины
- •Заключение
- •Библиографический список
4.4. Иерархичность
Рассмотрим иерархичность как закономерность построения всего мира и любой выделенной из него системы. Иерархическая упорядоченность пронизывает все, начиная от атомно-молекулярного уровня и кончая человеческим обществом. Иерархичность как закономерность заключается в том, что закономерность целостности проявляется на каждом уровне иерархии. Благодаря этому на каждом уровне возникают новые свойства, которые не могут быть выведены как сумма свойств элементов. При этом важно, что не только объединение элементов в каждом узле приводит к появлению новых свойств, которых у них не было, и утрате некоторых свойств элементов, но и что каждый член иерархии приобретает новые свойства, отсутствующие у него в изолированном состоянии.
Таким образом, на каждом уровне иерархии происходят сложные качественные изменения, которые не всегда могут быть представлены и объяснены. Но именно благодаря этой особенности рассматриваемая закономерность приводит к интересным следствиям. Во-первых, с помощью иерархических представлений можно отображать системы с неопределенностью.
Во-вторых, построение иерархической структуры зависит от цели: для многоцелевых ситуаций можно построить несколько иерархических структур, соответствующих разным условиям, и при этом в разных структурах могут принимать участие одни и те же компоненты. В-третьих, даже при одной и той же цели, если поручить формирование иерархической структуры разным исследователям, то в зависимости от их предшествующего опыта, квалификации и знания системы они могут получить разные иерархические структуры, т. е. по-разному разрешить качественные изменения на каждом уровне иерархии.
4.4. Эквифинальность
Это одна из наименее исследованных закономерностей. Она характеризует предельные возможности систем определенного класса сложности. Л. фон Берталанфи, предложивший этот термин, определяет эквифинальность применительно к «открытой» системе как способность (в отличие от состояний равновесия в закрытых системах) полностью детерминированных начальными условиями систем достигать не зависящего от времени состояния (которое не зависит от ее исходных условий и определяется исключительно параметрами системы). Потребность во введении этого понятия возникает начиная с некоторого уровня сложности, например биологические системы.
В настоящее время не исследован ряд вопросов этой закономерности: какие именно параметры в конкретных системах обеспечивают свойство эквивалентности, как обеспечивается это свойство, как проявляется закономерность эквивалентности в организационных системах?
4.5. Историчность
Время является непременной характеристикой системы, поэтому каждая система исторична, и это такая же закономерность, как целостность, интегративность и др. Легко привести примеры становления, расцвета, упадка и даже смерти биологических и общественных систем, но для технических и организационных систем определить периоды развития довольно трудно.
Основа закономерности историчности — внутренние противоречия между компонентами системы. Но как управлять развитием или хотя бы понимать приближение соответствующего периода развития системы — эти вопросы еще мало исследованы.
В последнее время на необходимость учета закономерности историчности начинают обращать больше внимания. В частности, в системотехнике при создании сложных технических комплексов требуется на стадии проектирования системы рассматривать не только вопросы разработки и обеспечения развития системы, но и вопрос, как и когда нужно ее уничтожить. Например, списание техники, особенно сложной — авиационной, «захоронение» ядерных установок и др.