
- •Бийский технологический институт (филиал)
- •А.В. Яскин конструкции и отработка ракетных двигателей на твёрдом топливе
- •Содержание
- •Введение
- •1 Конструктивно-компоновочные схемы ракетных двигателей на твёрдом топливе (рдтт)
- •1.1 Общая характеристика рдтт и его составных частей
- •1.2 Физические процессы, происходящие при работе рдтт
- •1.3 Рдтт баллистических ракет и космических систем
- •1.3.1 Рдтт межконтинентальных баллистических ракет
- •1.3.2 Космические системы
- •2 Корпуса рдтт
- •2.1 Конструктивные схемы корпусов рдтт
- •1 Примотанная к силовой оболочке консольная обечайка корпуса; 2 оболочка корпуса (второй кокон); 3 силовая оболочка (первый кокон)
- •1 Корпус двигателя; 2 ракетный отсек; 3 периферийный центральный шпангоут корпуса
- •1 Нижний удлинённый узел стыка корпуса; 2 узлы крепления специального двигателя; 3 специальный двигатель
- •1 Укороченные узлы стыков корпусов двигателей верхней и нижней ступеней ракет; 2 ракетный отсек
- •1 Периферийное отверстие на корпусе с крышкой; 2 – верхнее центральное (полюсное) отверстие в корпусе с крышкой; 3 нижнее центральное (полюсное) отверстие в корпусе
- •1 Верхнее днище корпуса; 2 разъёмы на цилиндрической (конической) части корпуса; 3 нижнее днище корпуса
- •Корпуса рдтт из композиционных материалов
- •2.2.1 Общее описание конструкции корпуса
- •1 Верхний шпангоут; 2 слой резины; 3 верхний стыковочный узел; 4 эластичный клин; 5 нижний шпангоут; 6 заклепки
- •2.2.2 Обеспечение герметичности корпусов
- •2.2.3 Конструкционные и теплозащитные материалы
- •2.3 Металлические корпуса рдтт
- •2.3.1 Особенности конструирования металлических корпусов
- •1, 3 Шпангоуты; 2 обечайки
- •1, 3, 10 Фланцы; 2 переднее днище; 4, 7, 8 шпангоуты; 5 обечайка; 6 пластиковый слой; 9 заднее днище; I местное увеличение толщины обечайки в зоне сварки
- •1 Шпангоут; 2 днище; 3 фланец
- •1 Крышка; 2, 4, 8 шпангоуты; 3 обечайка; 5, 7 регулировочные кольца; 6 корпус газосвязи; 9 соединительная труба
- •2.3.2 Корпуса рдтт вспомогательного назначения
- •1 Днище; 2 коническая обечайка; 3 теплозащитное покрытие; 4 манжета (бронирующий чехол); 5 стыковочный шпангоут; 6 крепление манжеты к тзп
- •1 Стыковочный шпангоут; 2 обечайка корпуса; 3 теплозащитное покрытие; 4 эластичный клин
- •2.4 Сборка корпуса рдтт с передней крышкой и сопловым блоком
- •2.4.1 Разъёмные соединения
- •2.4.2 Уплотнительные узлы и устройства
- •2.4.3 Методы контроля степени негерметичности
- •3 Сопловые блоки рдтт
- •3.1 Типовая конструкция сопла. Применяемые материалы
- •1 Утопленная часть; 2 раструб; 3 разрезное кольцо; 4 теплоизолирующая подложка; 5, 6 шпонки
- •3.2 Сопла с переменной степенью расширения
- •1 Сопло; 2 утопленное сопло; 3 раздвижное сопло
- •3.3 Конструкции сопловых заглушек
- •4 Узлы системы запуска, отсечки тяги рдтт
- •4.1 Узлы системы запуска двигателя
- •4.1.1 Инициаторы
- •4.1.2 Узлы газовой связи
- •4.1.3 Воспламенители
- •1 Футляр; 2 навеска
- •1 Пакет; 2 навеска
- •1 Мембрана; 2 крышка; 3 воспламенитель; 4 воспламенительный состав; 5 корпус; 6 герметизирующая оболочка; 7 форсажная трубка
- •1 Фланец; 2 предвоспламенитель в футляре; 3 плетеный каркас; 4 топливные шашки; 5 центрирующая форсажная трубка
- •4.2 Узлы отсечки тяги
- •1 Дуз; 2 пиродетонатор; 3 раструб отсечки; 4, 6 положение
- •7 Передающий дуз
- •5 Заряды рдтт
- •5.1 Основные конструктивные формы зарядов твёрдого топлива
- •5.2 Особенности работы торцевого заряда, прочно скреплённого с корпусом
- •5.3 Бронирующие покрытия
- •6 Перспективные композиционные материалы для рдтт
- •7 Опытно-конструкторские работы по созданию рдтт
- •7.1 Организация опытно-конструкторских работ (окр)
- •7.2 Этапы создания ракет и рдтт и задачи, решаемые при проектировании
- •7.3 Структура методических документов для отработки рдтт
- •7.4 Виды испытаний рдтт
- •7.5 Анализ отказов рдтт при стендовых испытаниях
- •8 Оснащение баллистических ракет подводных лодок (брпл) твёрдотопливными зарядами разработки фнпц «алтай»
- •8.1 Первая отечественная твёрдотопливная ракета морского базирования рсм-45
- •8.2 Твёрдотопливная ракета морского базирования рсм-52 («Тайфун»)
- •8.3 Твёрдотопливная ракета морского базирования рсм-52в («Барк»)
- •8.4 Эффективность проведённых разработок
- •8.5 О ликвидации зарядов рдтт после завершения срока службы ракеты
- •8.6 Применение флегматизирующих покрытий для регулирования расхода рдтт
- •Приложение а Проектирование и проектный расчёт заряда рдтт
- •А.2 Основные расчётные зависимости, используемые при проектировании заряда рдтт а.2.1 Расчёт площади горящей поверхности
- •А.2.2 Давление в камере сгорания
- •А.2.3 Текущие массовый расход продуктов сгорания и тяга рдтт
- •А.2.4 Определение проектных средних параметров заряда
- •А.2.5 Предельное максимальное давление в камере сгорания
- •А.3 Расчёт характеристик заряда а.3.1 Перечень исходных данных для курсового проекта
- •А.3.2 Перечень выполняемых расчётных работ в курсовом проекте
- •А.4 Требования к содержанию и оформлению курсового проекта
- •А.5 Пример расчёта а.5.1 Исходные данные
- •А.5.2 Расчёт
- •Литература
- •Конструкции и отработка ракетных двигателей на твёрдом топливе
8.3 Твёрдотопливная ракета морского базирования рсм-52в («Барк»)
В 1986 году были начаты работы по твёрдотопливной ракете РСМ-52В. Все заряды данной ракеты, кроме ПАД миномётного старта, разработаны и отработаны в ФНПЦ «АЛТАЙ» [11]. Повышение энергомассового совершенства РДТТ для БРПЛ связано не только с совершенствованием твёрдых топлив, но и оптимизацией конструктивно-компоновочных схем двигателей (корпуса типа кокона из полимерных композиционных материалов с удлиненными узлами стыка, утопленная в камеру дозвуковая часть сопла и др.). Это накладывает определенные ограничения на конструкцию зарядов и возможность повышения объёмного заполнения камеры маршевого РДТТ топливом. Вместе с тем одно из очевидных направлений повышения энерговооружённости РДТТ для БРПЛ в условиях дефицита габаритов – увеличение количества топлива в заданном объёме двигателя без ухудшения его внутрибаллистических и энергетических характеристик, надёжности, безопасности эксплуатации, т. е. обеспечение максимально достижимой величины Кv [11]. На РДТТ отечественных ракет РТ-2П, РСМ-45, РСМ-52, РС-22, американских ракетах «Минитмен», «Посейдон», «Трайдент», МХ используются конструкции зарядов канального типа с компенсаторами поверхности горения в виде различных щелей.
Простая цилиндроконическая форма начальной поверхности заряда РДТТ дает прогрессирующую диаграмму расхода (давления) по мере его выгорания. Но для РДТТ, как правило, характер изменения текущего расхода (давления) необходимо обеспечить близким к среднему за время работы двигателя, чтобы минимизировать пассивную массу корпуса, во многом определяемую максимальным давлением в камере (для первых ступеней может быть необходима дегрессивная диаграмма расхода). Поэтому в конструкциях зарядов к цилиндрической (или цилиндроконической) начальной поверхности нужны дополнительные конструктивные элементы в виде перфораций канала (щелей), разгар которых обеспечивает близкую к нейтральной (или дегрессивную) диаграмму текущего расхода.
В канальном заряде с продольными щелями требуемый закон изменения поверхности горения достигается подбором соотношения длин цилиндрического и щелевого участков, а также количеством щелей. Канальная часть горит с увеличением поверхности горения, а щелевая – с уменьшением. Продольные щели в заряде могут быть заменены поперечной кольцевой проточкой (зонтиком), варьированием угла наклона и высоты которой достигается требуемая диаграмма расхода (давления). В РДТТ с большой тягой нашли применение заряды с каналом, имеющим поперечное сечение в виде многолучевой звезды, то есть продольные щели расположены по всей длине канала заряда. Общий недостаток таких конструкций зарядов – это наличие концентраторов напряжений в основаниях щелей, что приводит к повышению требуемых для обеспечения прочности заряда физико-механических характеристик топлив по сравнению с зарядом, имеющим круглый канал. Кроме того, у звёздообразного заряда в конце его работы образуются дегрессивно догорающие остатки топлива. Для дальнейшего энергомассового совершенствования РДТТ при разработке твёрдотопливной ракеты РСМ-52В, наряду с использованием топлива, содержащего гидрид алюминия на верхних ступенях, повышением рабочего давления в камерах, увеличением степени расширения сопел, были спроектированы и отработаны новые конструктивные схемы маршевых зарядов с частично горящими торцами у днищ корпусов, защищённые рядом оформленных в установленном порядке изобретений.
Использование в РДТТ новых высокоэнергетических топлив предопределяет необходимость применения простейших формообразующих поверхность заряда оснасток для его дистанционной распрессовки за один технологический прием без применения разъёмных элементов. Такой концепции удовлетворяет конструкция заряда с поперечным сечением в виде многолучевой звезды. Но для повышения работоспособности сопла с разгорающимся критическим сечением и снижения потерь удельного импульса тяги необходимо обеспечить равномерный по окружности поток продуктов сгорания на входе в сопло.
Однородный поток продуктов сгорания на входе в сопло формируется при использовании канальных зарядов с поперечной кольцевой щелью или продольными щелями, расположенными у переднего днища, но для таких зарядов необходима очень сложная технологическая оснастка. Во всех канальных зарядах с перфорациями «резервным» объёмом под топливо являются собственно сами щели.
Канальные заряды маршевых РДТТ с различными видами перфораций имеют полное скрепление по цилиндрической части корпуса и раскреплены по одному или двум днищам в зависимости от соотношения длины и диаметра корпуса. Торцы заряда, примыкающие к днищам, если они с ними не скреплены, забронированы специальными раскрепляющими манжетами от канала до цилиндрической части корпуса. При действии внутрикамерного давления после запуска РДТТ заряд и корпус деформируются, а между манжетой и днищем появляется зазор. Для маршевых зарядов РСМ-52В были предложены конструкции зарядов, имеющие в этом зазоре дополнительную поверхность горения, что позволило отказаться от перфораций канала и тем самым использовать их объём под топливо.
Конструкции зарядов были выполнены в виде канальных моноблоков, на которых вместо традиционных щелевых компенсаторов (продольные или поперечные щели) использовалась часть открытой поверхности, прилегающей к переднему днищу корпуса для первой и второй ступеней и к заднему днищу для третьей ступени.
Несмотря на внешнюю простоту такого подхода, при разработке элементов корпуса, заряда и технологической оснастки было необходимо решить ряд сложных конструкторских и технологических проблем, чтобы одновременно обеспечить:
герметизацию заманжетной полости корпуса при формовании заряда, т. е. обеспечить непопадание топлива в зазор между днищем корпуса и укороченной манжетой;
одновременное вакуумирование внутреннего объёма корпуса и заманжетной полости при формовании заряда;
«сверхнадёжное» внедрение законцовки манжеты в топливо для исключения её «скальпирования» при запуске за счёт газодинамических сил при деформировании заряда в первоначально очень узком зазоре;
«антиадгезию» топлива в зоне открытого торца с теплозащитным покрытием днища;
торцевую разгрузку заряда (разрыв связей укороченной манжеты с днищем корпуса) при работе РДТТ без повреждения бронирующей укороченной манжеты;
гарантированное попадание газов в зазор между зарядом и днищем при запуске за счёт конструктивного оформления клинообразного входа в эту полость специальным элементом технологической оснастки, в конструкции которого размещаются также клапан-фильтры для вакуумирования при формовании заряда;
оптимальные толщины ТЗП днища в зоне открытого торца.
Эти задачи в процессе отработки РДТТ были успешно решены. Традиционная для канальных зарядов манжета торцевого раскрепления выполнялась укороченной до некоторого диаметра, превышающего диаметр полюсного отверстия корпуса. Специальное оформление укороченной манжеты позволило внедрять её законцовку в топливо с одновременной герметизацией заманжетного пространства для исключения попадания в него топлива при формовании заряда.
Научным руководителем первых работ по отработке зарядов с открытыми горящими торцами был кандидат технических наук А.С. Устюгов, а с 1991 года – академик РАРАН, профессор В.И. Марьяш [21]. Новые конструкции зарядов с горящими торцами обеспечили:
безопасную распрессовку зарядов, т. е. дистанционное извлечение иглы, формирующей центральный канал, за один технологический приём;
однородный поток продуктов сгорания на входе в сопло;
снижение требований к деформационным характеристикам топлива на канале и высокую степень «расчётности» действующих деформаций в опасных сечениях круглого канала, не имеющего концентраторов напряжений;
достижение высоких значений Кv на уровне 0,92; 0,95; 0,97 для I, II, III ступеней ракеты соответственно.
Корпус двигателя третьей ступени был близок к сферическому. Заряд имел небольшой глухой канал и задний горящий торец. Раскрытие и воспламенение торца обеспечивается после запуска РДТТ деформированием корпуса и заряда за счёт полного скрепления передней полусферы корпуса с зарядом. На этом двигателе достигнут наивысший для маршевых РДТТ в отечественной и зарубежной практике Кv ~ 0,97.
Экспериментальная отработка таких схем зарядов с горящими передними торцами осуществлялась на различных двигателях от сравнительно небольших (с массой зарядов менее одной тонны) до габаритов первой ступени. В процессе работ для анализа широко использовался метод рентгенотелевизионной визуализации динамики раскрытия зазора между зарядом и корпусом РДТТ и характера перемещения фронта горения в зоне горящего торца.
Специальные оценки стабильности воспламенения зарядов показали, что характеристики времени выхода двигателей на стационарный режим реализованы на том же уровне, что и на ранее отработанных двигателях с традиционными конструкциями зарядов (канально-щеле-вые, многолучевая звезда). Предельные отклонения внутрибаллистических характеристик двигателей также не увеличились из-за использования таких схем зарядов.
Характерной особенностью отработки РДТТ маршевых двигателей БРПЛ РСМ-52В была реализация новых методических подходов (методологии) к проверке физической работоспособности зарядов в заданных условиях эксплуатации, выполненная под научным руководством профессора И.И. Анисимова [21]. Их теоретической базой стали численные методы механики деформируемых тел, позволяющие учитывать пространственную сложность конфигураций твёрдотопливных зарядов, особенности их технологии изготовления и механического поведения используемых топлив. Появилась возможность решения связанных задач механики и газовой динамики, учета эффектов массопереноса при анализе эксплуатационной работоспособности РДТТ.
Ключевыми элементами экспериментальной отработки прочности стали многоцелевой высокоинформативный натурный и модельный эксперименты. Методологический акцент был сделан на проведении предельных, ресурсных и форсированных прочностных испытаний РДТТ, которые оснащались индивидуальными средствами измерения перемещений, напряжений и деформаций. Решение проблемы проверки конструкционной прочности заряда (особенно в зонах концентрации напряжений) возлагалось на полномасштабный макетный (инертное топливо) эксперимент.
Результатом практической реализации возможностей разработанной методологии явилась целая серия новых, интересных в научном отношении исследований. Характерной иллюстрацией являются результаты решения задачи о «схлопнутом» заманжетном зазоре. При работе зарядов из низкомодульных топлив в полете ракеты под действием осевых перегрузок в большинстве случаев реализуется схема посадки на днище раскреплённого заднего торца заряда. Это предопределило необходимость исследования процессов формоизменения системы «заряд–корпус», происходящих при раскрытии «схлопнутого» заманжетного зазора в период выхода двигателя на режим. Теоретическое решение этой связанной задачи механики и газодинамики отсутствует в связи с неопределенностью граничных условий в зоне контакта торца заряда с днищем корпуса. С целью практического решения этой проблемы на двигателе третьей ступени был реализован полномасштабный макетный эксперимент. Состояние нулевого заманжетного зазора (моделирование полетных перегрузок) обеспечивалось нагреванием двигателя выше равновесной температуры заряда. Нагружение осуществлялось в режиме динамического наддува (~ 0,1 с) пороховыми газами инициирующего устройства. В процессе нагружения экспериментально регистрировалось распределение параметров давления, температуры и перемещений по каналу и границе «торец зарядаднище корпуса». В зоне скрепления заряда с корпусом оценивались контактные напряжения, определяющие интенсивность нагружения исследуемой системы на различных этапах эксперимента.
В результате испытания зафиксировано развитие эффектов немонотонного деформирования торцевой зоны заряда, процессов волнового распространения давления и изменения контактных напряжений в зоне скрепления заряда с корпусом при заполнении раскрывающегося заманжетного зазора. Полученные экспериментальные данные позволили сформулировать рекомендации по обеспечению работоспособности этой зоны заряда и корпуса.
В конце 1997 года работы по этой ракете в силу ряда организационных и финансовых причин были сначала приостановлены, а потом прекращены на этапе лётных испытаний [18, 22].