Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0631362_B2EB3_yaskin_a_v_konstrukcii_i_otrabotk...doc
Скачиваний:
12
Добавлен:
31.12.2019
Размер:
8.74 Mб
Скачать

Введение

Ракетные двигатели на твёрдом топливе (РДТТ) – одно из древнейших изобретений человечества. Открытие дымных (чёрных) порохов, состоящих из калийной селитры, серы и угля, позволило создавать различные иллюминации и огненные фейерверки. В 969 году в Китае были разработаны стрелы с устройствами, забрасывающими эти стрелы на дальность до 1000 шагов. В Европе первые упоминания о «греческом огне», изобретённом Каллиникосом из Гелиополиса, встречаются примерно в 670 году. В Византии секрет греческого огня считался военной тайной, за разглашение которой назначались самые изощрённые наказания [2].

Эксперименты с «адской смесью» проводили начиная с XIII века Роджер Бэкон, граф Альбрехт фон Больштедт Великий, монах Бертольд Шварц, исследователь Марк Грек. Первые ракеты, созданные на основе дымных порохов, в силу своего несовершенства практически не могли повлиять на исход боевых сражений. Однако помимо световых иллюминаций и праздничных фейерверков они нашли применение в таких устройствах, как сигнальные и осветительные бомбы. В 1717 году в России была принята на вооружение осветительная граната, которая при массе 0,454 кг (один фунт) поднималась на высоту до 1077 м (500 саженей) [2].

На протяжении почти 700 лет метательный заряд для артиллерийских снарядов и ружейных пуль выполнялся из чёрного пороха. Падение интереса к пороховым ракетам в конце XV века объяснялся стремительным развитием огнестрельного оружия (стрелкового и артиллерийского), слабой технологической базой эпохи Средневековья. В конце XIX века были созданы бездымные пороха, основным компонентом которых являлась нитроцеллюлоза. Нитроцеллюлоза, пластифицированная нитроглицерином, легла в основу запатентованного Альфредом Бернхардом Нобелем в 1888 году нитроглицеринового пороха «баллистит» (1867 год – изобретение им же динамита). С 20-х годов прошлого века началось интенсивное развитие ракетной техники, в том числе и на твёрдом топливе. На баллиститном топливе разрабатывались первые системы залпового огня и первая опытная трёхступенчатая твёрдотопливная ракета РТ-1 с вкладными зарядами твёрдого топлива, имевшая стартовую массу 34 т и дальность полёта только 2400 км (начало разработки 1959 год) [28]. За короткий исторический период были созданы самые разнообразные ракетные двигатели твёрдого топлива – от реактивных снарядов времен Великой Отечественной войны до маршевых РДТТ современных ракет стратегических вооружений и космических систем на высокоэффективных смесевых ракетных твёрдых топливах (СРТТ).

Рабочий процесс в РДТТ (как и в любом химическом ракетном двигателе) складывается из двух основных стадий: сначала в камере сгорания химическая энергия топлива преобразуется в тепловую энергию газообразных продуктов сгорания, а затем в сопле тепловая энергия газов переходит в кинетическую энергию. Конечная цель работы ракетного двигателя – создание реактивной тяги с помощью струи газов, с большой скоростью вытекающих наружу.

Тяга, создаваемая каждым килограммом массы газов, вытекающих из двигателя в одну секунду, называется удельным импульсом тяги. Чем больше скорость истечения, тем больше удельный импульс тяги и, следовательно, тем совершеннее топливо и ракетный двигатель, так как он расходует меньше топлива при той же тяге. Поэтому развитие ракетной техники во многом определяется совершенствованием топлив и конструкций ракетных двигателей.

Создание РДТТ является очень сложным наукоёмким процессом. Научная компонента процесса проектирования состоит в применении научно обоснованных методик расчёта узлов и элементов двигателя, которые разрабатываются и апробируются методическими специалистами и учёными практически одновременно с отработкой нового РДТТ с учётом потребностей конструктора, закладывающего в конструкцию новые эффективные решения, ранее не применявшиеся в прототипах. Применение качественно новых решений (материалы, конструктивные схемы и элементы) является творческой компонентой для конструктора при проектировании и отработке РДТТ [2].

Сама по себе опытно-конструкторская отработка также требует от конструктора глубокого понимания физических процессов в двигателе и умелого технического руководства отработкой. Она включает в себя автономную отработку двигателя, его деталей и узлов, комплексные стендовые испытания РДТТ, включая эксплуатационные, а также совместные лётно-конструкторские испытания двигателей в составе ракеты. Автономная отработка РДТТ и его основных сборочных единиц подразделяется на прочностные, функциональные, ускоренные климатические, эксплуатационные испытания длительным хранением и др. Практически во всех этих испытаниях и их анализе, а также в интерпретации полученных результатов принимает активное участие конструктор РДТТ, зачастую возглавляя проведение всех работ. Поэтому будущему конструктору ракетного двигателя необходимы глубокие знания опыта предшествовавших разработок, особенностей конструкций ранее отработанных двигателей и его составных частей.

Рассмотрению устройства современных РДТТ и их конструктивно-компоновочных схем и посвящено данное учебное пособие, разработанное с использованием материалов выпущенной в 1993 г. (под общей редакцией член-корреспондента РАН Л.Н. Лаврова) самой цитируемой в книгах о РДТТ монографии [1] с привлечением работ других ведущих российских специалистов [2–5, 7, 8, 15, 16, 17, 19, 20, 29, 33, 36, 40, 42, 43, 45, 49]. Л.Н. Лавров [21] как Генеральный конструктор много лет возглавлял НПО «ИСКРА», в котором были разработаны лучшие отечественные РДТТ. Использовались также некоторые публикации автора учебного пособия в научно-технических сборниках «Ракетно-космическая техника» [1012] и доклады на международных конференциях HIGH ENERGY MATERIALS [23, 24, 44].

Разработка РДТТ под заданные характеристики начинается с выбора топлива и последующего проектирования заряда. Результаты проработок по заряду являются важнейшими исходными данными для конструирования и расчёта других узлов РДТТ. Поэтому в Приложении А приведены методические рекомендации, иллюстрирующие расчётные работы по заряду при выполнении курсового проекта студентами специальности 160302 по дисциплине «Основы конструирования ракетных двигателей». В разделе 8 обсуждаются конструкции зарядов к маршевым РДТТ для БРПЛ, которые разработаны в ФНПЦ «АЛТАЙ» для отечественных баллистических ракет при участии автора [21] в конце XX века. Эти материалы помогут студентам на семинарах при изучении дисциплин «Отработка РДТТ», «История ракетной техники».

По тексту пособия отражается вклад профессоров БТИ АлтГТУ, являвшихся одновременно и сотрудниками ФНПЦ «АЛТАЙ», в проведённые исследования. Значимость их вклада подчёркивается тем фактом, что имена ряда из них внесены в российскую энциклопедию «Космонавтика и ракетостроение» [21].