
- •Бийский технологический институт (филиал)
- •А.В. Яскин конструкции и отработка ракетных двигателей на твёрдом топливе
- •Содержание
- •Введение
- •1 Конструктивно-компоновочные схемы ракетных двигателей на твёрдом топливе (рдтт)
- •1.1 Общая характеристика рдтт и его составных частей
- •1.2 Физические процессы, происходящие при работе рдтт
- •1.3 Рдтт баллистических ракет и космических систем
- •1.3.1 Рдтт межконтинентальных баллистических ракет
- •1.3.2 Космические системы
- •2 Корпуса рдтт
- •2.1 Конструктивные схемы корпусов рдтт
- •1 Примотанная к силовой оболочке консольная обечайка корпуса; 2 оболочка корпуса (второй кокон); 3 силовая оболочка (первый кокон)
- •1 Корпус двигателя; 2 ракетный отсек; 3 периферийный центральный шпангоут корпуса
- •1 Нижний удлинённый узел стыка корпуса; 2 узлы крепления специального двигателя; 3 специальный двигатель
- •1 Укороченные узлы стыков корпусов двигателей верхней и нижней ступеней ракет; 2 ракетный отсек
- •1 Периферийное отверстие на корпусе с крышкой; 2 – верхнее центральное (полюсное) отверстие в корпусе с крышкой; 3 нижнее центральное (полюсное) отверстие в корпусе
- •1 Верхнее днище корпуса; 2 разъёмы на цилиндрической (конической) части корпуса; 3 нижнее днище корпуса
- •Корпуса рдтт из композиционных материалов
- •2.2.1 Общее описание конструкции корпуса
- •1 Верхний шпангоут; 2 слой резины; 3 верхний стыковочный узел; 4 эластичный клин; 5 нижний шпангоут; 6 заклепки
- •2.2.2 Обеспечение герметичности корпусов
- •2.2.3 Конструкционные и теплозащитные материалы
- •2.3 Металлические корпуса рдтт
- •2.3.1 Особенности конструирования металлических корпусов
- •1, 3 Шпангоуты; 2 обечайки
- •1, 3, 10 Фланцы; 2 переднее днище; 4, 7, 8 шпангоуты; 5 обечайка; 6 пластиковый слой; 9 заднее днище; I местное увеличение толщины обечайки в зоне сварки
- •1 Шпангоут; 2 днище; 3 фланец
- •1 Крышка; 2, 4, 8 шпангоуты; 3 обечайка; 5, 7 регулировочные кольца; 6 корпус газосвязи; 9 соединительная труба
- •2.3.2 Корпуса рдтт вспомогательного назначения
- •1 Днище; 2 коническая обечайка; 3 теплозащитное покрытие; 4 манжета (бронирующий чехол); 5 стыковочный шпангоут; 6 крепление манжеты к тзп
- •1 Стыковочный шпангоут; 2 обечайка корпуса; 3 теплозащитное покрытие; 4 эластичный клин
- •2.4 Сборка корпуса рдтт с передней крышкой и сопловым блоком
- •2.4.1 Разъёмные соединения
- •2.4.2 Уплотнительные узлы и устройства
- •2.4.3 Методы контроля степени негерметичности
- •3 Сопловые блоки рдтт
- •3.1 Типовая конструкция сопла. Применяемые материалы
- •1 Утопленная часть; 2 раструб; 3 разрезное кольцо; 4 теплоизолирующая подложка; 5, 6 шпонки
- •3.2 Сопла с переменной степенью расширения
- •1 Сопло; 2 утопленное сопло; 3 раздвижное сопло
- •3.3 Конструкции сопловых заглушек
- •4 Узлы системы запуска, отсечки тяги рдтт
- •4.1 Узлы системы запуска двигателя
- •4.1.1 Инициаторы
- •4.1.2 Узлы газовой связи
- •4.1.3 Воспламенители
- •1 Футляр; 2 навеска
- •1 Пакет; 2 навеска
- •1 Мембрана; 2 крышка; 3 воспламенитель; 4 воспламенительный состав; 5 корпус; 6 герметизирующая оболочка; 7 форсажная трубка
- •1 Фланец; 2 предвоспламенитель в футляре; 3 плетеный каркас; 4 топливные шашки; 5 центрирующая форсажная трубка
- •4.2 Узлы отсечки тяги
- •1 Дуз; 2 пиродетонатор; 3 раструб отсечки; 4, 6 положение
- •7 Передающий дуз
- •5 Заряды рдтт
- •5.1 Основные конструктивные формы зарядов твёрдого топлива
- •5.2 Особенности работы торцевого заряда, прочно скреплённого с корпусом
- •5.3 Бронирующие покрытия
- •6 Перспективные композиционные материалы для рдтт
- •7 Опытно-конструкторские работы по созданию рдтт
- •7.1 Организация опытно-конструкторских работ (окр)
- •7.2 Этапы создания ракет и рдтт и задачи, решаемые при проектировании
- •7.3 Структура методических документов для отработки рдтт
- •7.4 Виды испытаний рдтт
- •7.5 Анализ отказов рдтт при стендовых испытаниях
- •8 Оснащение баллистических ракет подводных лодок (брпл) твёрдотопливными зарядами разработки фнпц «алтай»
- •8.1 Первая отечественная твёрдотопливная ракета морского базирования рсм-45
- •8.2 Твёрдотопливная ракета морского базирования рсм-52 («Тайфун»)
- •8.3 Твёрдотопливная ракета морского базирования рсм-52в («Барк»)
- •8.4 Эффективность проведённых разработок
- •8.5 О ликвидации зарядов рдтт после завершения срока службы ракеты
- •8.6 Применение флегматизирующих покрытий для регулирования расхода рдтт
- •Приложение а Проектирование и проектный расчёт заряда рдтт
- •А.2 Основные расчётные зависимости, используемые при проектировании заряда рдтт а.2.1 Расчёт площади горящей поверхности
- •А.2.2 Давление в камере сгорания
- •А.2.3 Текущие массовый расход продуктов сгорания и тяга рдтт
- •А.2.4 Определение проектных средних параметров заряда
- •А.2.5 Предельное максимальное давление в камере сгорания
- •А.3 Расчёт характеристик заряда а.3.1 Перечень исходных данных для курсового проекта
- •А.3.2 Перечень выполняемых расчётных работ в курсовом проекте
- •А.4 Требования к содержанию и оформлению курсового проекта
- •А.5 Пример расчёта а.5.1 Исходные данные
- •А.5.2 Расчёт
- •Литература
- •Конструкции и отработка ракетных двигателей на твёрдом топливе
1 Утопленная часть; 2 раструб; 3 разрезное кольцо; 4 теплоизолирующая подложка; 5, 6 шпонки
Рисунок 3.4 Конструкция сопла из УУКМ
При проектировании сопел, имеющих минимальные потери удельного импульса тяги при минимальной массе, большое внимание необходимо уделять вопросам прогнозирования теплового состояния конструкции: расчётам газовой динамики, пограничного слоя, взаимодействия газовой и конденсированной фаз продуктов сгорания со стенкой сопла с учётом применения разнообразных композитов на основе углеродных матриц. Этот класс углеродных материалов рассматривается в качестве материалов будущего [7].
3.2 Сопла с переменной степенью расширения
Общеизвестно, что максимум тяги (удельного импульса тяги) ракетного двигателя достигается при расширении продуктов сгорания топлива до давления окружающей среды. С учетом конкретной массы конструкции сопла степень расширения сопла, как правило, принимают меньше возможной.
Между
тем высокая значимость каждой единицы
удельного импульса тяги РДТТ определяет
необходимость поиска технических
решений по увеличению степени расширения
сопла, новых материалов, схем и конструкций.
В РДТТ первого поколения применяли
сопла неизменной геометрии со степенью
расширения, равной 45,
чтобы не увеличивать длину и диаметр
двигателя и ракеты. При изменении степени
расширения rа
сопла
от 5 до 10 удельный импульс
может быть увеличен на 240270
м/с, а при увеличении степени расширения
с 10 до 15
дополнительно на 110120
м/с (рисунок 3.5) [1].
1 = 2150 м/с; 2 = 2550 м/с; 3 = 2600 м/с; 4 = 2700 м/с (указан расчётный термодинамический удельный импульс тяги различных топлив для стандартного расширения 40/1 [33])
Рисунок 3.5 Зависимость = f(rа) для различных топлив
Однако конструирование сопел с большими степенями расширения существенно усложняется для РДТТ в связи с габаритными ограничениями.
Варианты размещения сопла большой степени расширения в пространстве между днищами РДТТ приведены на рисунке 3.6 [1]. Размещение сопла удлиняет соединительный отсек и всю ракету на величи-ну ∆. Длина ракеты может быть уменьшена либо путём утапливания сопла в корпус РДТТ, либо применением раздвижного сопла. В настоящее время чаще всего при разработке РДТТ внедряется сочетание одновременного применения утопленного и раздвижного сопел.
1 Сопло; 2 утопленное сопло; 3 раздвижное сопло
Рисунок 3.6 Варианты размещения сопла в пространстве межступенчатого отсека между днищами РДТТ разных ступеней
Выделим три основных типа конструктивных схем сопел с переменной степенью расширения: с жёсткими и выдвигаемыми насадками; с легкодеформируемыми (гибкими) раструбами; с лепестковыми раструбами.
Сопла с жёсткими выдвигаемыми насадками (рисунок 3.7) называют раздвижными [1].
Рисунок 3.7 Конструктивная схема сопла с переменной степенью расширения в виде жёсткого выдвигаемого насадка при работе РДТТ во время полёта ракеты (изображено исходное положение насадка)
В сложенном (исходном) положении выдвигаемые насадки размещаются у заднего днища двигателя, а в выдвинутом (рабочем) положении они образуют с неподвижной частью сопла единый газодинамический тракт для продуктов сгорания.
Легкодеформируемый раструб сопла (рисунок 3.8) [1] можно выполнить из тканого материала и закрепить на неподвижной части. Такой раструб может быть выполнен также из легкодеформируемого металла (например, ниобия).
Лепестковый раструб (рисунок 3.9) [1] представляет собой набор профилированных панелей. В современных конструкциях РДТТ пока применяются сопла с жёсткими выдвигаемыми насадками [1].
Выдвижение насадков соплового блока в рабочее положение может осуществляться после разделения ступеней. Различают два способа выдвижения (раздвижки) насадков в рабочее положение: до запуска двигателя (холодная раздвижка) и после запуска двигателя (горячая раздвижка).
На рисунке 3.10 [1] приведены типовые циклограммы подачи команд для обоих способов выдвижения.
Для реализации схемы холодной раздвижки необходим интервал времени между разделением ступеней и запуском двигателя.
В
общем случае этот интервал определяется
совокупностью таких факторов как
относительные скорости разделяемых
ступеней, уровень давления наддува
соединительных отсеков ракеты (если он
применяется на ней), а также величиной
скоростного напора при полёте ракеты
в атмосфере и составляет для различного
класса ракет от 0,05 до 1,0 с. Преимуществом
способа хо-лодной раздвижки соплового
блока является то, что параметры
выдвижения и конструкция привода
отра-батываются в процессе автономных
испытаний [1].
Выдвижение насадков сопла проводится по команде от системы управления ракеты. Команда подается на разрывной элемент (например, пироболт) узла фиксации выдвигаемого насадка в исходном положении. После расфиксации происходит страгивание и выдвижение насадка под действием сил привода, а также сил, действующих в натурных условиях полёта (аэродинамическая сила, сила трения, сила инерции насадка) [1].