
- •Бийский технологический институт (филиал)
- •А.В. Яскин конструкции и отработка ракетных двигателей на твёрдом топливе
- •Содержание
- •Введение
- •1 Конструктивно-компоновочные схемы ракетных двигателей на твёрдом топливе (рдтт)
- •1.1 Общая характеристика рдтт и его составных частей
- •1.2 Физические процессы, происходящие при работе рдтт
- •1.3 Рдтт баллистических ракет и космических систем
- •1.3.1 Рдтт межконтинентальных баллистических ракет
- •1.3.2 Космические системы
- •2 Корпуса рдтт
- •2.1 Конструктивные схемы корпусов рдтт
- •1 Примотанная к силовой оболочке консольная обечайка корпуса; 2 оболочка корпуса (второй кокон); 3 силовая оболочка (первый кокон)
- •1 Корпус двигателя; 2 ракетный отсек; 3 периферийный центральный шпангоут корпуса
- •1 Нижний удлинённый узел стыка корпуса; 2 узлы крепления специального двигателя; 3 специальный двигатель
- •1 Укороченные узлы стыков корпусов двигателей верхней и нижней ступеней ракет; 2 ракетный отсек
- •1 Периферийное отверстие на корпусе с крышкой; 2 – верхнее центральное (полюсное) отверстие в корпусе с крышкой; 3 нижнее центральное (полюсное) отверстие в корпусе
- •1 Верхнее днище корпуса; 2 разъёмы на цилиндрической (конической) части корпуса; 3 нижнее днище корпуса
- •Корпуса рдтт из композиционных материалов
- •2.2.1 Общее описание конструкции корпуса
- •1 Верхний шпангоут; 2 слой резины; 3 верхний стыковочный узел; 4 эластичный клин; 5 нижний шпангоут; 6 заклепки
- •2.2.2 Обеспечение герметичности корпусов
- •2.2.3 Конструкционные и теплозащитные материалы
- •2.3 Металлические корпуса рдтт
- •2.3.1 Особенности конструирования металлических корпусов
- •1, 3 Шпангоуты; 2 обечайки
- •1, 3, 10 Фланцы; 2 переднее днище; 4, 7, 8 шпангоуты; 5 обечайка; 6 пластиковый слой; 9 заднее днище; I местное увеличение толщины обечайки в зоне сварки
- •1 Шпангоут; 2 днище; 3 фланец
- •1 Крышка; 2, 4, 8 шпангоуты; 3 обечайка; 5, 7 регулировочные кольца; 6 корпус газосвязи; 9 соединительная труба
- •2.3.2 Корпуса рдтт вспомогательного назначения
- •1 Днище; 2 коническая обечайка; 3 теплозащитное покрытие; 4 манжета (бронирующий чехол); 5 стыковочный шпангоут; 6 крепление манжеты к тзп
- •1 Стыковочный шпангоут; 2 обечайка корпуса; 3 теплозащитное покрытие; 4 эластичный клин
- •2.4 Сборка корпуса рдтт с передней крышкой и сопловым блоком
- •2.4.1 Разъёмные соединения
- •2.4.2 Уплотнительные узлы и устройства
- •2.4.3 Методы контроля степени негерметичности
- •3 Сопловые блоки рдтт
- •3.1 Типовая конструкция сопла. Применяемые материалы
- •1 Утопленная часть; 2 раструб; 3 разрезное кольцо; 4 теплоизолирующая подложка; 5, 6 шпонки
- •3.2 Сопла с переменной степенью расширения
- •1 Сопло; 2 утопленное сопло; 3 раздвижное сопло
- •3.3 Конструкции сопловых заглушек
- •4 Узлы системы запуска, отсечки тяги рдтт
- •4.1 Узлы системы запуска двигателя
- •4.1.1 Инициаторы
- •4.1.2 Узлы газовой связи
- •4.1.3 Воспламенители
- •1 Футляр; 2 навеска
- •1 Пакет; 2 навеска
- •1 Мембрана; 2 крышка; 3 воспламенитель; 4 воспламенительный состав; 5 корпус; 6 герметизирующая оболочка; 7 форсажная трубка
- •1 Фланец; 2 предвоспламенитель в футляре; 3 плетеный каркас; 4 топливные шашки; 5 центрирующая форсажная трубка
- •4.2 Узлы отсечки тяги
- •1 Дуз; 2 пиродетонатор; 3 раструб отсечки; 4, 6 положение
- •7 Передающий дуз
- •5 Заряды рдтт
- •5.1 Основные конструктивные формы зарядов твёрдого топлива
- •5.2 Особенности работы торцевого заряда, прочно скреплённого с корпусом
- •5.3 Бронирующие покрытия
- •6 Перспективные композиционные материалы для рдтт
- •7 Опытно-конструкторские работы по созданию рдтт
- •7.1 Организация опытно-конструкторских работ (окр)
- •7.2 Этапы создания ракет и рдтт и задачи, решаемые при проектировании
- •7.3 Структура методических документов для отработки рдтт
- •7.4 Виды испытаний рдтт
- •7.5 Анализ отказов рдтт при стендовых испытаниях
- •8 Оснащение баллистических ракет подводных лодок (брпл) твёрдотопливными зарядами разработки фнпц «алтай»
- •8.1 Первая отечественная твёрдотопливная ракета морского базирования рсм-45
- •8.2 Твёрдотопливная ракета морского базирования рсм-52 («Тайфун»)
- •8.3 Твёрдотопливная ракета морского базирования рсм-52в («Барк»)
- •8.4 Эффективность проведённых разработок
- •8.5 О ликвидации зарядов рдтт после завершения срока службы ракеты
- •8.6 Применение флегматизирующих покрытий для регулирования расхода рдтт
- •Приложение а Проектирование и проектный расчёт заряда рдтт
- •А.2 Основные расчётные зависимости, используемые при проектировании заряда рдтт а.2.1 Расчёт площади горящей поверхности
- •А.2.2 Давление в камере сгорания
- •А.2.3 Текущие массовый расход продуктов сгорания и тяга рдтт
- •А.2.4 Определение проектных средних параметров заряда
- •А.2.5 Предельное максимальное давление в камере сгорания
- •А.3 Расчёт характеристик заряда а.3.1 Перечень исходных данных для курсового проекта
- •А.3.2 Перечень выполняемых расчётных работ в курсовом проекте
- •А.4 Требования к содержанию и оформлению курсового проекта
- •А.5 Пример расчёта а.5.1 Исходные данные
- •А.5.2 Расчёт
- •Литература
- •Конструкции и отработка ракетных двигателей на твёрдом топливе
3.1 Типовая конструкция сопла. Применяемые материалы
Типовая конструкция неподвижного, частично утопленного в камеру сгорания сопла РДТТ, имеющего относительно высокое давление в камере сгорания (рк=410 МПа) и большое время работы (τ=30100 с), представлена на рисунке 3.3 [1]. Сопло состоит из силового корпуса 1 с теплозащитным покрытием 2 и газового тракта, включающего в себя: докритическую часть (воротник 3 и входной вкладыш 4), критическую часть (вкладыш 5 с облицовкой 6); сверхзвуковую часть (раструб 7).
Рисунок 3.3 Схема сопла крупногабаритного РДТТ
Габаритные размеры сопла (длина и диаметр раструба) определяют с учетом диаметра корпуса двигателя, степени расширения сопла, компоновки элементов системы управления вектором тяги и рулевого привода, ограничений по углу поворота или качания [1].
Весьма значительные тепловые, механические, химические воздействия на элементы конструкции сопла, а также неравномерность их распределения по газовому тракту обусловливают тот факт, что конструкции сопел РДТТ являются сложными, состоящими из множества теплозащитных, эрозионностойких и силовых элементов. Вместе с тем наличие поверхностей раздела и сочленений между различными элементами, расположенными вдоль газового тракта сопла, приводит к тому, что вблизи этих поверхностей скорость эрозионного и химического уносов материалов существенно превышает эрозию монолитных участков внутренней поверхности сопла. К тому же уносы материалов соседних элементов газового тракта сопла могут отличаться друг от друга. Вследствие этого поверхность газового тракта сопла становится неоднородной, что существенно ухудшает газодинамическую картину течения продуктов сгорания твёрдого топлива по сопловому тракту и в конечном счёте увеличивает потери удельного импульса тяги РДТТ [29].
В развитии и совершенствовании конструкций РДТТ прослеживаются тенденции к повышению давления и температуры в камере сгорания при использовании новых рецептур твёрдых топлив. Вследствие этого изменялись параметры двухфазного потока продуктов сгорания, их химический состав, что требовало применения новых материалов, работоспособных в этих новых условиях. Значительный прогресс был достигнут применением в конструкции сопел композиционных материалов, таких как фенольные стекло- и углепластики, углерод-углерод-ные композиции, разновидности графитов и др. [1].
Воротник и входной вкладыш докритической части сопла изготавливают из углепластика и углерод-углеродных композиционных материалов УУКМ (см. выноску на рисунке 3.3).
В качестве материалов для вкладышей критического сечения сопловых блоков РДТТ используют тугоплавкие металлы (вольфрам, молибден) и их сплавы, пиролитический графит, УУКМ. В качестве подложки облицовки из вольфрамового сплава используют высокоплотные графиты, которые также применяют для изготовления входных вкладышей [1]. Всё большее применение находят сопла с разгораемым критическим сечением из армированных материалов [3].
Материал критического вкладыша сопла должен обеспечивать стабильную скорость уноса в процессе работы двигателя. Скорости уноса пирографитовых и углепластиковых материалов составляют от 0 до 0,5 мм/с [1].
Сверхзвуковую часть сопла (раструб 7) выполняют обычно из углепластиков и вклеивают в металлическую (сталь, титановый или алюминиевый сплав) оболочку, которая может быть изготовлена также из стекло-, угле- и органопластиков [1].
В последние годы при конструировании раструбов широкое при-менение получили материалы класса углерод-углерод. Углерод-углеродные композиционные материалы (УУКМ), представляющие собой систему «углеродное волокноуглеродная матрица» и обладающие рядом уникальных свойств: чрезвычайно высокой теплостойкостью (в инертной среде они сохраняют свои высокие удельные физико-механические свойства вплоть до 2500 К и работают при повышенных температурах в отличие от углепластиков), хорошей стойкостью к термоудару (как тугоплавкие материалы), низкими значениями температурного коэффициента расширения и теплопроводности. Сохранение теплостойкости УУКМ при высоких температурах позволяет существенно упростить конструкцию сопла [7]. На рисунке 3.4 приведена конструкция сопла с максимальным использованием УУКМ в виде монолитных блоков [1].