
- •Предисловие
- •I. Понятия и постулаты термодинамики
- •1. Макроскопическая система
- •2. Параметры системы
- •3. Термодинамическое равновесие
- •4. Термодинамический контакт
- •5. Основные положения (постулаты) термодинамики
- •6. Температура
- •7. Температурные шкалы. Термометры
- •8. Термическое уравнение состояния
- •9. Равновесные и неравновесные процессы
- •II. Первое начало термодинамики
- •10. Формулировка первого начала
- •11. Внутренняя энергия
- •12. Работа
- •13. Теплота. Энергия переноса массы
- •14. Механический эквивалент теплоты. Опыты Джоуля
- •15. Теплоемкость системы. Удельная теплоемкость
- •16. Опыты Гей-Люссака и Джоуля
- •17. Адиабатический и политропический процессы в идеальном газе
- •III. Второе начало термодинамики
- •18. О втором начале термодинамики
- •19. Принцип Томсона
- •20. Принцип Клаузиуса
- •21. Эквивалентность формулировок второго начала
- •22. Обратимые и необратимые процессы
- •23. Коэффициент полезного действия тепловой машины. Цикл Карно
- •24. Теорема Карно
- •25. Абсолютная термодинамическая шкала температур
- •26. Метод циклов
- •27. Неравенство Клаузиуса
- •28. Динамический способ отопления помещения
- •29. Термодинамическое определение энтропии
- •30. Закон возрастания энтропии
- •31. Примеры неравновесных процессов
- •32. О тепловой смерти Вселенной
- •33. Энтропия как мера хаоса
8. Термическое уравнение состояния
Выше говорилось, что в термодинамическом равновесии внутренние параметры являются функциями внешних параметров и температуры. В частности, опыт показывает, что для сжимаемых сред (газов, жидкостей) в равновесном состоянии давление, объем и температура находятся в функциональной зависимости
f(p, V, T) = 0. (8.1)
Это термическое уравнение состояния сжимаемых сред в общем виде. Какой параметр (давление или объем) считать внешним, а какой внутренним, зависит от конкретной задачи. Вид функциональной зависимости различен для разных сред. Для идеального газа термическим уравнением состояния является уравнение Клапейрона–Менделеева
pV = νRT, или p = νRT /V. (8.2)
Здесь ν – число молей газа, R = 8,314 Дж / (моль К) – универсальная газовая постоянная (одна и та же для всех газов).
Для смеси идеальных газов имеет место закон Дальтона: давление смеси p равно сумме парциальных давлений pi компонент
p =
.
Так как число молей смеси ν = νi, то уравнение состояния смеси идеальных газов имеет тот же вид, что и для химически однородного идеального газа.
Реальные газы лишь приблизительно следуют уравнению Клапейрона–Менделеева. Существует ряд моделей, учитывающих реальные свойства газов. Наиболее известной является модель газа Ван-дер-Ваальса. Уравнение Ван-дер-Ваальса имеет вид
p = νRT / (V – νb) – aν2 / V 2, (8.3)
где a и b – постоянные, различные для конкретных газов. В этом уравнении учитывается конечный размер молекул и их взаимодействие. Модель описывает жидкие и газообразные состояния вещества, а также переход жидкости в газ и наоборот.
Термическое уравнение состояния принадлежит к числу важнейших характеристик макроскопических свойств физически однородных тел. Его нельзя получить из общих принципов термодинамики. Термодинамика заимствует его из опыта либо статистической физики.
Макроскопическая система необязательно может характеризоваться давлением и объемом, но также другими параметрами. Например, гальванический элемент характеризуется эдс E и проходящим зарядом e (уравнение состояния в этом случае может быть вида E = E(T)); мыльная или иная пленка – поверхностным натяжением σ и площадью (уравнение состояния будет σ = σ(T)), диэлектрик – поляризацией P и напряженностью электрического поля E (для изотропного диэлектрика эти величины связаны уравнением P = (ε(T) – 1) / 4π E, ε(T) – диэлектрическая проницаемость, зависящая от температуры) и т. д.
Термическое уравнение состояния связывает обобщенные силы с внешними параметрами, являющимися обобщенными координатами, и с температурой. Система может характеризоваться не одним термическим уравнением состояния. Этот вопрос будет затронут при рассмотрении работы, совершаемой системой.