Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KNIGA1.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
681.98 Кб
Скачать

5. Основные положения (постулаты) термодинамики

Макроскопическая система, не обменивающаяся с внешними телами ни энергией (в том числе и излучением), ни веществом называется изолированной.

В термодинамике постулируется, что изолированная макроскопическая система с течением времени приходит в состояние термодинамического равновесия и никогда самопроизвольно выйти из него не может. Это первый, или основной, постулат термодинамики. Он получен в результате обобщения многочисленных опытных данных.

Нелишне напомнить, что термодинамическое равновесие, которое устанавливается в изолированной системе, включает в себя три элемента: механическое, тепловое и химическое равновесие между всеми частями системы.

Первый постулат исключает из рассмотрения термодинамикой явления, связанные с большими самопроизвольными отклонениями от равновесного состояния и исключает из рассмотрения системы, для которых равновесное состояние вообще невозможно. В рамках статистической физики показывается, что постулат не является абсолютным законом природы, а выражает лишь наиболее вероятное поведение системы. Никогда не прекращающееся движение молекул приводит к спонтанным отклонениям системы от равновесия (флуктуациям). Для макроскопических систем эти флуктуации малы и ими можно пренебречь. Термодинамический подход становится неправомерным для систем с малым числом степеней свободы. При относительно небольшом числе частиц флуктуации становятся большими.

Но термодинамический подход не применим и для систем галактических размеров. Гравитационное взаимодействие в случае очень больших систем приводит к возникновению непрерывно сменяющих друг друга больших флуктуаций. Такие системы одинаково часто как приближаются к равновесию, так и удаляются от него.

Второй постулат связан с другими свойствами термодинамического равновесия. Опыт показывает, что если две системы A и B , находящиеся в равновесных состояниях, привести в тепловой контакт, то независимо от различия или равенства у них внешних параметров xi они или остаются по-прежнему в состоянии термодинамического равновесия, или, спустя некоторое время в результате обмена энергией, приходят в другое равновесное состояние. При этом равновесие не нарушается, если устранить тепловой контакт, а затем снова его восстановить. Кроме того, если имеются три равновесные системы A, B и C и если системы A и B порознь находятся в равновесии с системой C, то системы находятся в термодинамическом равновесии и между собой (свойство транзитивности термодинамического равновесия). Это условно можно записать так:

A ~ C, B ~ CA ~ B. (5.1)

Свойство транзитивности термодинамического равновесия составляет содержание второго постулата термодинамики.

6. Температура

Из второго постулата следует, что состояние термодинамического равновесия системы определяется не только внешними параметрами xi, но и еще одной величиной (пусть это будет t), которая характеризует внутреннее состояние системы. Значения t при тепловом контакте разных систем в результате обмена энергией становятся одинаковыми и не изменяются как при продолжающемся тепловом контакте, так и после его устранения. Свойство транзитивности термодинамического равновесия (5.1) позволяет сравнивать значения величины t у разных систем, не приводя их в непосредственный тепловой контакт, а пользуясь каким-либо третьим телом. Эту величину, выражающую состояние внутреннего движения равновесной системы, имеющую одно и то же значение у всех независимых частей сложной равновесной системы, назвали температурой, а третье тело, которое служит для сравнения температуры разных систем, – термометром. Имея одно и то же значение для всех частей равновесной системы, температура относится к интенсивным параметрам; она является мерой интенсивности теплового движения.

Положение о существовании температуры как особой функции состояния равновесной системы представляет иную формулировку второго постулата термодинамики. Его называют еще нулевым началом термодинамики, так как оно, подобно первому и второму началам, определяющим существование некоторых функций состояния, устанавливает существование температуры у равновесных систем.

Температура, таким образом, является термодинамическим равновесным параметром. Она существует только у термодинамических равновесных систем, притом у таких, части которых не взаимодействуют друг с другом. Точнее сказать, у систем, для которых энергия взаимодействия частей много меньше их собственной внутренней энергии, и в этом смысле части сложной системы являются независимыми. Энергия такой системы равна сумме энергий отдельных ее частей. Следовательно, согласно второму постулату энергия термодинамической системы является аддитивной функцией. Для больших гравитирующих систем принцип аддитивности энергии не выполняется вследствие дальнодействующего характера гравитационных сил. Эти системы не являются термодинамическими.

Итак, состояние термодинамического равновесия определяется совокупностью внешних параметров и температурой. Отсюда следует, что другие внутренние параметры (помимо температуры) не являются независимыми параметрами.

Все равновесные внутренние параметры системы являются функциями внешних параметров и температуры. Это еще одна формулировка второго постулата.

Так как, в частности, энергия системы является ее внутренним параметром, то при равновесии она будет функцией только внешних параметров и температуры.

Согласно второму постулату (из приведенной формулировки это прямо следует) изменение температуры может быть найдено по изменению какого-либо внутреннего параметра. На этом основано устройство различных термометров.

Необходимо еще установить, какая температура больше, а какая меньше. Для этого вводится дополнительное условие: полагается, что при подводе к телу энергии при постоянных внешних параметрах температура его повышается. Такой выбор позволяет считать внутреннюю энергию монотонно возрастающей функцией температуры.

Итак, температура вводится как величина, позволяющая описывать тепловое равновесие между телами, находящимися в тепловом контакте. Если t1 и t2 – температуры двух тел, то соотношение t1 = t2 является условием теплового равновесия. Если t1 > t2, то при тепловом контакте между двумя телами температура t1 будет уменьшаться, а t2 – увеличиваться. Если t1 = t2 и t2 = t3, то t1 = t3 в соответствии со свойством транзитивности термодинамического равновесия (5.1).

Возникает задача, как практически определить температуру.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]