
- •Оглавление
- •Автомобильный бензин
- •Физико-химические и эксплуатационные свойства автомобильных бензинов
- •Детонационная стойкость
- •Испаряемость бензина
- •Химический и углеводородный состав
- •Вязкость и плотность
- •Химическая стабильность
- •Совместимость с неметаллическими материалами: резинотехническими изделиями, уплотнениями, фильтрующими элементами и т.Д.
- •Технология производства автомобильных бензинов
- •Ассортимент и качество вырабатываемых автомобильных бензинов
- •ТранспортироВание и хранение автобензинов
- •Порядок постановки на производство и сертификации автомобильных бензинов
- •Дизельні палива загальні відомості
- •Прокачування палив
- •Випаровування 1 згоряння дизельних палив
- •Асортимент дизельних палив
- •Газовое топливо
- •Природный газ
- •Компримированный природный газ (кпг)
- •Сжиженный природный газ (спг)
- •Сжиженный нефтяной газ (снг)
- •Для двигателей внутреннего сгорания
- •Производство альтернативных моторных топлив из природного газа
- •Производство синтез-газа
- •Производство метанола и продуктов на его основе
- •Спиртовые и оксигенатные топлива
- •Спиртовые топлива
- •Этанол и бензино-этанольные топлива.
- •Оксигенатные топлива
- •. Диметиловый эфир
- •. Биотоплива
- •Водородные топлива
- •Топливные элементы
- •Заключение
- •Приложение
- •Моторные масла Предисловие
- •Основы производства и состав
- •1.1. Базовые масла минеральные
- •1.2. Базовые масла синтетические
- •Вязкостные присадки
- •Присадки, улучшающие смазывающие свойства
- •Антикоррозионные присадки
- •Антиокислительные присадки
- •Дополнительные присадки
- •Свойства и методы их определения
- •Плотность, цвет и загрязнение масел
- •Вязкостно-температурные характеристики
- •Фрикционные свойства
- •Методы определения смазывающих свойств
- •Определение моющих свойств
- •Совместимость с эластомерами
- •Окисление
- •Моторные испытания масел
- •Классификации и спецификации Классификация по вязкости Степени вязкости sae
- •Методы тестирования
- •Небходимая степень вязкости
- •Категория энергосберегающих масел
- •Система классификации jaso
- •Система классификации ссмс
- •Система классификации асеа
- •Спецификации производителей оригинального оборудования (oem)
- •Назначение и режимы эксплуатации
- •Тенденции развития ассортимента
- •Моторные масла для спортивных автомобилей
- •Масла для дизельных двигателей легковых автомобилей
- •Суперуниверсалные тракторные масла stоu
- •Классификация и маркировка
- •Трансмиссионные масла назначение и требования к качеству Назначение
- •Автомобильные трансмиссии и требования к качеству масел
- •Фрикционные механизмы
- •Свойства масел и методы их оценки Условия работы
- •2.2. Эксплуатационные свойства
- •Методы испытаний
- •Международные классификации
- •Эксплуатацитонные группы
- •Масла для механической коробки передач летковых автомобилей
- •Масла для раздаточной коробки передач
- •Масла для дифференциала
- •Масла для дифференциала повышенного трения
- •Масла для вязкостной муфты
- •Масла для рулевого механизма
- •Масла для малонагруженных передач
- •Масла для автоматической коробки передач
- •Масла для механических коробок передач
- •4.2.2. Масла для гидромеханической и гидрообьемной передачи
- •Введение
- •Состав и его влияние на свойства
- •Мыла металлов
- •Углеводородные загустители
- •Свойства и методы их оценки
- •Классификация смазок
- •3.1 Система классификации nlgi
- •Обозначения
- •Технические жидкости
- •Испытание моторных топлив и масел
- •Паливна економічність автомобіля
- •Литература
Вязкостно-температурные характеристики
С повышением температуры вязкость масла понижается характер изменения вязкости выражается параболой (рис. 2.6,а). Такая зависимость экстратраполяции и діля расчетов вязкости. Поэтому кривую зависимости приобретает практически прямой характер в полулогарифмических координатах, в которых эта зависимость приобретает прямой характер (рис. 2.6,б).
Индекс вязкости VI (viscosity index) - это эмпирический, безразмерный показатель для оценки зависимости вязкости масла от температуры. Чем выше численное значение индекса вязкости, Чем меньше вязкость масла зависит от температуры. (рис. 2.7) и тем меньше наклон кривой (рис. 2.8).
Рис. 2.6. Зависимость вязкости масла от температуры: а - в прямолинейных координатах; б - в полулогарифмических координатах
Рис. 2.7. Изменение вязкости от температуры масел с различным VI
Масло с более высоким индексом вязкости имеет лучшую текучесть при низкой температуре (запуск холодного двигателя) и более высокую вязкость при рабочей температуре двигателя. Высокий индекс вязкости необходим для всесезонных масел и некоторых гидравлических масел (жидкостей). Индекс вязкости определяется (по стандартам ASTM D 2270, DIN ISO 2909) при помощи двух эталонных масел. Вязкость одного из них сильно зависит от температуры (индекс вязкости принимается равным нулю, VI=0), а вязкость другого - мало зависит от температуры (индекс вязкости принимается равным 100 единиц, VI =100), При температуре 100°С вязкость обоих эталонных масел и исследуемого масла должна быть одинаковой. Шкала индекса вязкости получается делением разницы вязкостей эталонных масел при температуре 40°С на 100 равных частей. Индекс вязкости исследуемого масла находят по шкале после определения его вязкости при температуре 40°С, а если индекс вязкости превышает 100, его находят расчетным путем (рис. 2.8).
Индекс вязкости сильно зависит от молекулярной структуры соединений, составляющих базовые минеральные масла. Наивысший индекс вязкости бывает у парафиновых ювых масел (около 100), у нафтеновых масел - значительно меньший (30-60), а у ароматических масел - даже ниже нуля.
Рис. 2.8. Схема определения индекса вязкости: а - в прямолинейных координатах; б - в полулогарифмических координатах
При очистке масел их индекс вязкости, как правило, повышается, что в основном связано с удалением из масла ароматических соединений. Высоким индексом вязкости обладают масла гидрокрекинга. Гидрокрекинг является од-:м из основных методов получения масел с высоким индексом вязкости. Высокий индекс вязкости у синтетических базовых масел: у полиальфаолефинов - до 130, у полиалкингликолей - до 150, у сложных полиэфиров - около 150. Индекс вязкости масел можно повысить введением специальных присадок - полимерных загустителей.
Смазывающие свойства
Смазывающие свойства проявляются в способности масла подавлять изнашивание задиры, а также снижать трение.
Смазывание
Смазывание (lubrication). При работе пары трения можно наблюдать разные явления смазывания, которые зависят от нагрузки, скорости скольжения и от состояния и материала смазки. В нормальных условиях между поверхностями трения находится жидкий слой масла. Такое смазывание называется гидродинамическим (hydrodynamic lubrication, ll-fluid-film lubrication), когда сила трения зависит только от вязкости масла. Обычно на І мой поверхности металла образуется адсорбированная пленка масла толщиной около 1 мкм (adsorption film of lubricant) в результате естественной активности - липкости illness, tackiness) масла (вследствие взаимодействия полярных групп соединений масла поверхностью металла). Особо высокой липкостью отличаются растительные масла (и ч эфиры), жиры животных, а также полярные соединения, содержащиеся в минеральном масле: смолы, жирные и нафтеновые кислоты и др. Парафиновые масла содержат малое количество активных полярных соединений, поэтому их смазывающие свойства проявляются только в условиях гидродинамической смазки, когда поверхности трения полностью разделены жидким слоем масла.
Слой жидкого масла уменьшает трение и предохраняет поверхности от износа только при сравнительно невысокой нагрузке и температуре. При увеличении нагрузки или при повышении температуры основная часть масла выдавливается из межповерхностного пространства и на поверхностях трения остается только тонкая пленка адсорбированного масла. Такое смазывание называется граничным (boundary lubrication). Сила трения в таком случае уже не зависит от вязкости масла, а износ определяется стойкостью адсорбционной пленки и ее адгезией к металлу (т.е. липкостью масла). Для повышения липкости в масло вводятся специальные липкостные присадки (tackiness agents), которые уменьшают трение и износ в условиях граничной смазки.
При критической нагрузке или предельном давлении, трущиеся поверхности нагреваются до критической температуры (более 150 °С), при которой адсорбционная пленка разрушается, трение усиливается, а поверхности металла нагреваются и свариваются в точках их соприкосновения. Если в масле присутствуют активные соединения серы, фосфора, хлора - противозадирных присадок (за рубежом называемые присадками ЕР - extreme pressure additives), то на местах наибольшего трения, активные соединения разлагаются с выделением активных элементов, которые реагируют с металлом и образуют на его поверхности сульфидную, хлоридную или фосфидную хемосорбционную пленку (пленку твердой смазки).
Эта пленка является более стойкой, чем адсорбционная пленка масла, кроме того, она химически связана с металлом и поэтому может предохранять трущиеся поверхности от износа и уменьшать трение в условиях высокой температуры и давления. Активные элементы наиболее интенсивно реагируют с металлом на выступах контактирующих поверхностей, благодаря чему трущиеся поверхности выравниваются и полируются. Хемо-сорбционная пленка предохраняет трущиеся поверхности от схватывания и задиров.
Наибольший эффект в предохранении от износа и сваривания деталей достигается при применении хорошо подобранных и совмещенных липкостных и противозадирных присадок.
Новые исследования показали, что в автомобиле потери энергии от трения распределяются следующим образом:
• 67 % при жидкостном режиме смазывания;
• 33 % при смешанном и граничном режимах смазывания.
Снижение потерь энергии на трение в двигателе на 50 %, может позволить сэкономить 3-17 % топлива, а при подобном снижении потерь в трансмиссии - экономия топлива может сотавлять 1,8 - 5,5 %.
Нагрузочная, несущая способность (load-carrying capacity) - способность масляной пленки к самоудержанию на поверхности металла и к защите металла от интенсивного износа в условиях высокой нагрузки, скорости сдвига и температуры. Нагрузочная способность масла определяется методами исследования смазывающих свойств (метод четырех шариков, метод FZG и др.) по изменению скорости износа и по величине предельной нагрузки. Иногда нагрузочную способность в конкретном испытании называют OK нагрузкой (OK load) и выражают в ньютонах.