
- •Оглавление
- •Автомобильный бензин
- •Физико-химические и эксплуатационные свойства автомобильных бензинов
- •Детонационная стойкость
- •Испаряемость бензина
- •Химический и углеводородный состав
- •Вязкость и плотность
- •Химическая стабильность
- •Совместимость с неметаллическими материалами: резинотехническими изделиями, уплотнениями, фильтрующими элементами и т.Д.
- •Технология производства автомобильных бензинов
- •Ассортимент и качество вырабатываемых автомобильных бензинов
- •ТранспортироВание и хранение автобензинов
- •Порядок постановки на производство и сертификации автомобильных бензинов
- •Дизельні палива загальні відомості
- •Прокачування палив
- •Випаровування 1 згоряння дизельних палив
- •Асортимент дизельних палив
- •Газовое топливо
- •Природный газ
- •Компримированный природный газ (кпг)
- •Сжиженный природный газ (спг)
- •Сжиженный нефтяной газ (снг)
- •Для двигателей внутреннего сгорания
- •Производство альтернативных моторных топлив из природного газа
- •Производство синтез-газа
- •Производство метанола и продуктов на его основе
- •Спиртовые и оксигенатные топлива
- •Спиртовые топлива
- •Этанол и бензино-этанольные топлива.
- •Оксигенатные топлива
- •. Диметиловый эфир
- •. Биотоплива
- •Водородные топлива
- •Топливные элементы
- •Заключение
- •Приложение
- •Моторные масла Предисловие
- •Основы производства и состав
- •1.1. Базовые масла минеральные
- •1.2. Базовые масла синтетические
- •Вязкостные присадки
- •Присадки, улучшающие смазывающие свойства
- •Антикоррозионные присадки
- •Антиокислительные присадки
- •Дополнительные присадки
- •Свойства и методы их определения
- •Плотность, цвет и загрязнение масел
- •Вязкостно-температурные характеристики
- •Фрикционные свойства
- •Методы определения смазывающих свойств
- •Определение моющих свойств
- •Совместимость с эластомерами
- •Окисление
- •Моторные испытания масел
- •Классификации и спецификации Классификация по вязкости Степени вязкости sae
- •Методы тестирования
- •Небходимая степень вязкости
- •Категория энергосберегающих масел
- •Система классификации jaso
- •Система классификации ссмс
- •Система классификации асеа
- •Спецификации производителей оригинального оборудования (oem)
- •Назначение и режимы эксплуатации
- •Тенденции развития ассортимента
- •Моторные масла для спортивных автомобилей
- •Масла для дизельных двигателей легковых автомобилей
- •Суперуниверсалные тракторные масла stоu
- •Классификация и маркировка
- •Трансмиссионные масла назначение и требования к качеству Назначение
- •Автомобильные трансмиссии и требования к качеству масел
- •Фрикционные механизмы
- •Свойства масел и методы их оценки Условия работы
- •2.2. Эксплуатационные свойства
- •Методы испытаний
- •Международные классификации
- •Эксплуатацитонные группы
- •Масла для механической коробки передач летковых автомобилей
- •Масла для раздаточной коробки передач
- •Масла для дифференциала
- •Масла для дифференциала повышенного трения
- •Масла для вязкостной муфты
- •Масла для рулевого механизма
- •Масла для малонагруженных передач
- •Масла для автоматической коробки передач
- •Масла для механических коробок передач
- •4.2.2. Масла для гидромеханической и гидрообьемной передачи
- •Введение
- •Состав и его влияние на свойства
- •Мыла металлов
- •Углеводородные загустители
- •Свойства и методы их оценки
- •Классификация смазок
- •3.1 Система классификации nlgi
- •Обозначения
- •Технические жидкости
- •Испытание моторных топлив и масел
- •Паливна економічність автомобіля
- •Литература
Водородные топлива
Интерес к водороду как моторному топливу обусловлен следующими обстоятельствами:
- при сгорании водорода в двигателе образуется практически только вода и в этом отношении двигатель на водородном топливе является наиболее экологически чистым;
- высокие энергетические свойства водорода - низшая теплота сгорания водорода составляет 120 МДж/кг, что более чем в 4 раза выше по сравнению с бензином (около 25 МДЖ/кг), т.е. 1 кг водорода эквивалентен почти 4,5 кг бензина;
- практически неограниченная сырьевая база при условии получения водорода из воды.
Рїспользование водорода в качестве моторного топлива для автомобилей может осуществляться по нескольким вариантам:
- применение самого водорода;
- применение водорода совместно с традиционными нефтяными топл ивами;
- использование водорода как топлива в топливных элементах (раздел 6).
В настоящее время мощности по производству водорода в мире оцениваются в 40 млн т в год, при этом более 90% водорода получают в процессах риформинга и в других нефтеперерабатывающих и нефтехимических процессах. Водород вырабатывается также при конверсии природного газа в синтез-газ (раздел 1.3). Получение водорода электролизом воды в настоящее время - процесс чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе.
Кроме того, следует учитывать способ получения электроэнергии, необходимой для электролиза воды. Если электроэнергия вырабатывается на электростанциях, использующих в качестве топлива природный газ (минимальная токсичность дымовых газов) или уголь (максимальная токсичность дымовых газов), то экологичность применения водорода в качестве моторного топлива во многом теряет свои преимущества. Доля электростанций, использующих энергию воды, атомные станции, солнечные батареи в большинстве стран мира не очень велика.
Практически весь вырабатываемый в настоящее время водород используется в различных процессах нефтепереработки (гидроочистка, гидроформинг, гидроизомеризация и т.п.) и нефтехимии (процессы гидрирования).
При высокой массовой энергоплотности объемная энергоплотность водорода на 15-20% ниже по сравнению с бензином [4]. С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций вплоть до = 10, что обеспечивает устойчивую работу двигателя на всех скоростных режимах в широком диапазоне изменения состава смеси от = 0,2 до = 5. Критическая степень сжатия при стехиометрическом водород о-воздушном составе смеси не превышает 4,7, что соответствует октановому числу по исследовательскому методу 46 единицам, в то время как при = 3,5 степень сжатия достигает 9,4 и октановое число равно 114. Таким образом, при достаточном обеднении смеси возможна бездетонационная работа водородного двигателя в широком диапазоне степеней сжатия.
Отсутствие углерода в водородном топливе приводит к тому, что в отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СН). Незначительные количества этих продуктов в отработавших газах обусловлены выгоранием смазочных материалов, попадающих в камеру сгорания. Выброс оксидов азота при стехиометрическом составе смеси за счет более высокой температуры горения водородо-воздушной смеси вдвое превышает выброс оксидов азота бензинового двигателя. Обеднение смеси приводит к быстрому снижению, и при =1,8 оксиды азота в отработавших газах практически отсутствуют.
Высокая реакционная способность водорода приводит к возможности проскока пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию водородо-воздушных смесей. Из всех возможных вариантов устранения этого явления наиболее предпочтительным является впрыск водорода непосредственно в камеру сгорания, при этом возможно повышение степени сжатия до 15,4 и при = 2,5 повышение КПД двигателя на 55% [4].
Основной проблемой использования водорода в качестве моторного топлива является его хранение на автомобиле, которое может быть реализовано в нескольких вариантах:
- сжатый газообразный водород;
- сжиженный водород;
- с использованием носителей водорода в виде гидридов металлов или других носителей.
Наилучшие показатели обеспечиваются при хранении сжиженного водорода (табл. 29).
Разработанные системы хранения сжатого водорода при давлении 34,5 и 69 МПа позволят существенно уменьшить объем бака, но не его массу из-за увеличения толщины стенки. Кроме того, столь высокие давления потребуют специальных методов защиты места установки бака.
Хранение жидкого водорода - достаточно сложная задача, учитывая его низкую температуру кипения (минус 252,8 °С). Поэтому жидкий водород хранят в специальных емкостях с двойными стенками, пространство между которыми заполнено материалом с очень низким коэффициентом теплопроводности. Столь низкая температура требует использования специальных сплавов, поскольку для большинства металлов контакт с жидким водородом уменьшает ударную вязкость, делает его хрупким. Следует также учитывать способность водорода проникать через толщу материала, которая возрастает с увеличением температуры и давления.
Перспективным направлением является хранение водорода в виде гидридов металлов, когда водород находится в химически связанном состоянии и высвобождается при нагреве до 70-80 °С. Учитывая невысокую молекулярную массу водорода по сравнению с атомным весом металла, основную массу такого топлива составляет масса металла-носителя. При использовании гидрида магния (см. табл. 29) это соотношение составляет около 168 кг магния и 13 кг водорода.
Высокая температура самовоспламенения водородо-воздушных смесей затрудняет использование этого топлива в дизельных двигателях. Устойчивое воспламенение может быть обеспечено принудительным поджигом от свечи или организацией работы по газодизельному режиму, аналогичному рассмотренному ранее для газового топлива.
Технические трудности при использовании и высокая стоимость водорода привели к тому, что уделяется внимание разработке комбинированного топлива бензин-водород. Высокая активность водорода позволяет обеспечить работу двигателя на обедненных смесях, степень обеднения зависит от количества водорода в смеси [4]:
Содержание водорода, % масс |
0 |
10 |
20 |
40 |
100 |
|
1,12 |
1,67 |
2,5 |
3,34 |
5,0 |
Проведенные испытания показали, что использование бензино-водородных смесей позволяет вдвое снизить расход бензина при скорости 90-120 км/ч и на 28% при езде в городе.
Определенные сложности использования водорода в качестве моторного топлива создает его высокая взрыво- и пожароопасность. Водородо-воздушные смеси имеют широкие диапазоны воспламенения 14-75% об. и взрываемости 18,3-74%. Однако высокая температура воспламенения (590 °С) и быстрое рассеивание в атмосфере позволяют приравнивать водород по показателям пожаро- и взрывоопасное к природному газу.
В последние годы большее внимание уделяется разработке и использованию на автомобильном транспорте топливных элементов, топливом для которых служат водород или продукты, способные при переработке выделять водород.