Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гирин экспл материали.doc
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
55.95 Mб
Скачать

Водородные топлива

Интерес к водороду как моторному топливу обусловлен следующими обстоятельствами:

- при сгорании водорода в двигателе образуется практически только вода и в этом отношении двигатель на водородном топливе является наиболее экологически чистым;

- высокие энергетические свойства водорода - низшая теплота сгорания водорода составляет 120 МДж/кг, что более чем в 4 раза выше по сравнению с бензином (около 25 МДЖ/кг), т.е. 1 кг водорода эквивалентен почти 4,5 кг бензина;

- практически неограниченная сырьевая база при условии получения водорода из воды.

Рїспользование водорода в качестве моторного топлива для автомобилей может осуществляться по нескольким вариантам:

- применение самого водорода;

- применение водорода совместно с традиционными нефтяными топл ивами;

- использование водорода как топлива в топливных элементах (раздел 6).

В настоящее время мощности по производству водорода в мире оцениваются в 40 млн т в год, при этом более 90% водорода получают в процессах риформинга и в других нефтеперерабатывающих и нефтехимических процессах. Водород вырабатывается также при конверсии природного газа в синтез-газ (раздел 1.3). Получение водорода электролизом воды в настоящее время - процесс чрезвычайно дорогой, по затратам энергии он практически равен количеству энергии, получаемой при сгорании водорода в двигателе.

Кроме того, следует учитывать способ получения электроэнергии, необходимой для электролиза воды. Если электроэнергия вырабатывается на электростанциях, использующих в качестве топлива природный газ (минимальная токсичность дымовых газов) или уголь (максимальная токсичность дымовых газов), то экологичность применения водорода в качестве моторного топлива во многом теряет свои преимущества. Доля электростанций, использующих энергию воды, атомные станции, солнечные батареи в большинстве стран мира не очень велика.

Практически весь вырабатываемый в настоящее время водород используется в различных процессах нефтепереработки (гидроочистка, гидроформинг, гидроизомеризация и т.п.) и нефтехимии (процессы гидрирования).

При высокой массовой энергоплотности объемная энергоплотность водорода на 15-20% ниже по сравнению с бензином [4]. С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций вплоть до = 10, что обеспечивает устойчивую работу двигателя на всех скоростных режимах в широком диапазоне изменения состава смеси от = 0,2 до = 5. Критическая степень сжатия при стехиометрическом водород о-воздушном составе смеси не превышает 4,7, что соответствует октановому числу по исследовательскому методу 46 единицам, в то время как при = 3,5 степень сжатия достигает 9,4 и октановое число равно 114. Таким образом, при достаточном обеднении смеси возможна бездетонационная работа водородного двигателя в широком диапазоне степеней сжатия.

Отсутствие углерода в водородном топливе приводит к тому, что в отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СН). Незначительные количества этих продуктов в отработавших газах обусловлены выгоранием смазочных материалов, попадающих в камеру сгорания. Выброс оксидов азота при стехиометрическом составе смеси за счет более высокой температуры горения водородо-воздушной смеси вдвое превышает выброс оксидов азота бензинового двигателя. Обеднение смеси приводит к быстрому снижению, и при =1,8 оксиды азота в отработавших газах практически отсутствуют.

Высокая реакционная способность водорода приводит к возможности проскока пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию водородо-воздушных смесей. Из всех возможных вариантов устранения этого явления наиболее предпочтительным является впрыск водорода непосредственно в камеру сгорания, при этом возможно повышение степени сжатия до 15,4 и при = 2,5 повышение КПД двигателя на 55% [4].

Основной проблемой использования водорода в качестве моторного топлива является его хранение на автомобиле, которое может быть реализовано в нескольких вариантах:

- сжатый газообразный водород;

- сжиженный водород;

- с использованием носителей водорода в виде гидридов металлов или других носителей.

Наилучшие показатели обеспечиваются при хранении сжиженного водорода (табл. 29).

Разработанные системы хранения сжатого водорода при давлении 34,5 и 69 МПа позволят существенно уменьшить объем бака, но не его массу из-за увеличения толщины стенки. Кроме того, столь высокие давления потребуют специальных методов защиты места установки бака.

Хранение жидкого водорода - достаточно сложная задача, учитывая его низкую температуру кипения (минус 252,8 °С). Поэтому жидкий водород хранят в специальных емкостях с двойными стенками, пространство между которыми заполнено материалом с очень низким коэффициентом теплопроводности. Столь низкая температура требует использования специальных сплавов, поскольку для большинства металлов контакт с жидким водородом уменьшает ударную вязкость, делает его хрупким. Следует также учитывать способность водорода проникать через толщу материала, которая возрастает с увеличением температуры и давления.

Перспективным направлением является хранение водорода в виде гидридов металлов, когда водород находится в химически связанном состоянии и высвобождается при нагреве до 70-80 °С. Учитывая невысокую молекулярную массу водорода по сравнению с атомным весом металла, основную массу такого топлива составляет масса металла-носителя. При использовании гидрида магния (см. табл. 29) это соотношение составляет около 168 кг магния и 13 кг водорода.

Высокая температура самовоспламенения водородо-воздушных смесей затрудняет использование этого топлива в дизельных двигателях. Устойчивое воспламене­ние может быть обеспечено принудительным поджигом от свечи или организацией работы по газодизельному режиму, аналогичному рассмотренному ранее для газового топлива.

Технические трудности при использовании и высо­кая стоимость водорода привели к тому, что уделяется внимание разработке комбинированного топлива бензин-водород. Высокая активность водорода позволяет обеспечить работу двигателя на обедненных смесях, степень обеднения зависит от количества водорода в смеси [4]:

Содержание водорода, % масс

0

10

20

40

100

1,12

1,67

2,5

3,34

5,0

Проведенные испытания показали, что использование бензино-водородных смесей позволяет вдвое снизить расход бензина при скорости 90-120 км/ч и на 28% при езде в городе.

Определенные сложности использования водорода в качестве моторного топлива создает его высокая взрыво- и пожароопасность. Водородо-воздушные смеси имеют широкие диапазоны воспламенения 14-75% об. и взрываемости 18,3-74%. Однако высокая температура воспламенения (590 °С) и быстрое рассеивание в атмосфере позволяют приравнивать водород по показателям пожаро- и взрывоопасное к природному газу.

В последние годы большее внимание уделяется раз­работке и использованию на автомобильном транспорте топливных элементов, топливом для которых служат водород или продукты, способные при переработке выделять водород.