
- •Глава 1. История логики.
- •Глава 2. Предмет и значение теоретической логики.
- •Глава 3. Традиционная логика.
- •Глава 4. Символическая логика.
- •Глава 5. Неклассическая логика.
- •Глава 6. Логика и методология научного знания.
- •Глава 7. Практическая логика
- •Глава 1
- •1.1.1. Элементы логики у Парменида, Гераклита и Зенона
- •1.1.2. Логико-риторические проблемы у софистов
- •1.1.4. Логические идеи представителей мегарской школы
- •1.1.5. Логико-методологические идеи Платона
- •1.2.1. Методология Аристотеля
- •1.2.2. Учение о суждениях
- •1.2.3. Теория силлогизма
- •1.3.2. Логика эпикурейцев
- •1.3.3. Логика скептиков
- •1.4.1. Логические идеи Фомы Аквинского
- •1.4.2. Эпистемология Дунса Скота
- •1.4.3. Эпистемология и логика Уильяма Оккама
- •1.4.4. Основные средневековые типы логико-методологического мировоззрения
- •1.5.1. Логические идеи Пьера Рамэ
- •1.6.1. Принципы формально-логического рационализма
- •1.6.2. Новая философия Лейбница
- •1.6.3. Универсальная характеристика
- •1.6.4. Концепция о ясных и отчетливых понятиях
- •1.6.5. Определение понятия тождества и достаточного основания
- •1.7.1. Теория познания Канта
- •1.7.2. Аналитическое и синтетическое знание
- •1.7.3. Трансцендентальная логика
- •1.7.4. Чистые категории рассудка
- •1.8.1. Философская система Гегеля
- •1.8.2. Диалектическая логика Гегеля
- •Глава 2
- •2.1.1. Опыт и рассуждение в науке
- •2.1.2. Мышление как предмет изучения теоретической логики
- •2.1.3. Язык и мышление. Естественный и искусственный языки
- •2.2.1. Роль языка в мыслительных и речевых актах
- •2.2.2. Речевые акты и фреймы знания
- •2.2.3. Суждение, рассуждение, умозаключение
- •2.2.4. Структура рассуждения
- •2.3.1. Понятие закона мышления
- •2.3.2. Закон тождества
- •2.3.3. Закон противоречия
- •2.3.4. Формы противоречий
- •2.3.5. Закон исключенного третьего
- •2.3.6. Закон достаточного основания
- •2.4.1. Исторический метод
- •2.4.2. Аксиоматический метод
- •2.4.3. Метод формализации
- •2.4.4. Логический синтаксис и логическая семантика
- •2.4.5. Логические исчисления
- •Глава 3
- •3.1.1. Знак: смысл и значение
- •3.1.2. Дескриптивные и логические термины
- •3.1.3. Понятие как форма мышления
- •3.1.4. Объем и содержание понятия
- •3.1.5. Образование понятий
- •3.1.6. Виды понятий
- •3.1.7. Отношения понятий по объему
- •3.1.8. Отношения между понятиями по содержанию
- •3.2.1. Логическая структура суждения
- •3.2.2. Суждение и вопрос
- •3.2.3. Качественные и количественные характеристики суждений
- •3.2.4. Совместимые и несовместимые суждения. Логический квадрат
- •3.3.1. Определение как логическая операция
- •3.3.2. Виды определений
- •3.3.3. Правила корректных определений
- •3.3.4. Приемы, сходные с определением
- •3.3.5. Деление понятий
- •3.3.6. Виды и правила деления понятий
- •3.4.1. Природа и виды умозаключений
- •3.4.2. Умозаключение по логическому квадрату
- •3.4.3. Простой категорический силлогизм
- •3.4.4. Аксиома силлогизма
- •3.4.5. Правила силлогизма
- •3.4.6. Общая характеристика фигур силлогизма
- •3.4.7. Модусы фигур силлогизма
- •3.5.1. Непосредственное и опосредованное доказательство
- •3.5.2. Значение доказательств в науке
- •3.5.3. Строение и структура доказательства
- •3.5.4. Виды доказательств
- •3.5.5. Опровержение
- •3.5.6. Условия и правила, обеспечивающие эффективность доказательства. Основные ошибки
- •3.6.1. Природа индуктивного умозаключения
- •3.6.2. Понятие аналогии
- •3.6.4. Основные виды индукции и индуктивных умозаключений
- •3.6.5. Популярная и научная индукция
- •3.7.1. Специфика гипотезы
- •3.7.2. Виды гипотез
- •3.7.3. Основные этапы разработки гипотезы
- •3.7.4. Проверка гипотезы
- •Глава 4
- •4.1.1. Логические союзы
- •4.1.2. Язык логики высказываний
- •4.1.3. Понятие правильно построенного высказывания (ппв) определяется таким образом:
- •4.1.4. Понятие формулы логики высказываний
- •4.2.1. Семантическая таблица отрицания
- •4.2.2. Семантическая таблица конъюнкции
- •4.2.3. Семантическая таблица дизъюнкции
- •4.2.4. Семантическая таблица импликации
- •4.2.5. Семантическая таблица эквивалентности
- •4.3.1. Порядок логических действий
- •4.3.2. Табличный способ исчисления истинностных значений
- •4.4.1. Закон двойственности
- •4.4.2. Понятие самодвойственной формулы
- •4.4.3. Равносильные формулы
- •4.4.4. Свойства равносильности
- •4.5.1. Понятие тождественно-истинной формулы
- •4.5.2. Понятие тождественно-ложной формулы
- •4.5.3. Некоторые свойства тождественно-истинных формул:
- •4.6.1. Понятие нормальной формы
- •4.6.2. Процедура приведения к нормальной форме
- •4.6.3. Проблема разрешимости
- •4.8.1. Понятие логического вывода
- •4.8.2. Правила вывода
- •4.8.3. Правило построения прямого доказательства
- •4.8.4. Косвенное доказательство
- •4.8.5. Сильное (классическое) косвенное доказательство
- •4.8.6. Аксиоматическое представление логики высказываний
- •4.8.7. Полнота классического исчисления высказываний
- •4.9.2. Исчисление предикатов. Общезначимость
- •4.9.3. Тождественно-истинные формулы логики предикатов
- •4.9.4. Логическое следование
- •4.9.5. Естественный вывод в логике предикатов
- •4,9.6, Специфические законы логики предикатов
- •4.9.8. Свойства теорий первого порядка
- •4.9.9. Секвенции
- •Глава 5
- •5.1.1. Элементы модальной логики в античности
- •5.1.2. Понятия необходимости и возможности
- •5.1.3. Алетические модальные исчисления
- •5.1.4. Естественный вывод в алетических исчислениях
- •5.2.1. Анализ норм
- •5»2.2. Деонтические исчисления
- •5.3.1. Деонтическая система «Deontic»
- •5.3.2. Деонтическая система р
- •5.3.3. Деонтическая система sdl
- •5.3.4. Деонтическая система dt
- •5.3.5. Семейство деонтических систем 01 1— 01 4
- •5.4.1. Понятие деонтически возможного мира
- •5.4.3. Условия истинности деонтических формул
- •5.5.1. Оценки и нормы
- •5.5.2. Проблема истинности оценок
- •5.5.3. Логика оценок
- •Глава 6
- •6.1.1. Логико-математические методы
- •6.1.1. Логико-математические методы
- •6.1.2. Виды познания
- •6.1.3. Структура познавательного процесса
- •6.1.4. Общенаучные методы познания
- •6.1.5. Общенаучные подходы к построению научного знания
- •6.1.6. Методология научного познания
- •6.1.7. Проблема истины в познании
- •6.2.1. Эмпирическая интерпретация
- •6.2.2. Конструктивные объекты
- •6.2.3. Логический язык эмпирической интерпретации
- •6.3.1. Структура математических теорий
- •6.3.2. Структура теорий опытных (эмпирических) наук
- •6.3.3. Научная теория как обобщенное идеальное отображение мира
- •6.4.1. Логическое уточнение понятия теории
- •6.4.2. Логические отношения между теориями
- •6.4.3. Сравнение теорий с помощью определений
- •6.5.1. Дедуктивно-номологическое объяснение
- •6.5.2. Рациональное объяснение
- •6.5.3. Интенциональное объяснение. Практический силлогизм
- •Глава 7
- •7.5.1. Тактика аргументации
- •7.5.2. Уловки и приемы аргументации
- •7.5.3. Моральный кодекс спора
4.9.2. Исчисление предикатов. Общезначимость
Описанная в предыдущем параграфе система по существу представляет собой исходную точку для формулирования различных исчислений предикатов. Отличительные особенности классического исчисления предикатов (которое мы рассматриваем) включают в себя дальнейшие положения, распространяющие единственное допущение, относящееся к исчислению высказываний, а именно, что к простой формуле поставлено в соответствие только одно истинное значение 1 или 0 (истина или ложь).
Формулы в исчислении предикатов гораздо сложнее, чем формулы логики высказываний. Соответственно этому указан^ ное выше допущение мы введем несколькими последовательными шагами.
Прежде всего примем, что данной системе поставлено в соответствие непустое множество D, называемое полем {предметной областью, множеством или областью интерпретации), что каждая предметная переменная черпает свои значения в D. Примем далее, что каждому n-местному предикатному символу поставлена в соответствие логическая функция, т. е. функция, определенная на D со значениями (1,0). (Для 0-местного предиката поставленную ему в соответствие функцию примем за постоянную 1 или 0.)
Примем, наконец, что простой формуле Р(у 1, у2,. уп приписывается истинностное значение, связанное с приписыванием элементов из поля D каждой переменной из числа yl, у2,. уп, следующим образом. Если переменной yi приписывается элемент di поля!) и если предикатному символу Р(х1, х2, . хп) приписывается значение f, то истинностное значение для Р(у1, у2, . , уn) будет f (dl, d2, . dn).
Например, если Р(х, у, х) есть простая формула и формуле Р (х, у, z) приписывается значение f, то истинностное значение Р (х, у, х), связанное с приписыванием элемента а переменной х и элемента в переменной^, будет f (а,в, а). Вышеизложенное служит основой оценочной процедуры для формулы С в исчислении предикатов. В этой процедуре предполагается, что дано поле D; каждому предикатному символу, входящему в него, ставится в соответствие функция и 3) каждой из свободных переменных в С приписывается значение в D. Взятые вместе эти три положения задают приписывание для формулы С. В качестве примера рассмотрим вопрос о приписывании истинностных значений формуле
(х)(Р(х) и Q) V (Q & Р(у)).
Хотя поле фиксировано, оно неизвестно. Предположим, что D=(a, в). По предположению формуле Р(х) поставлена в соответствие логическая функция, определенная на D со значениями в {1, 0}, а формуле Q некоторое истинностное значение. Далее свободная переменная принимает любое значение в поле D.
Логические функции могут быть поставлены в соответствие формуле Р (х), даны ниже в таблице:
Значениями, которые можно поставить в соответствие формуле, являются 1 и 0 , а у можно приписать значение а или в. Таким образом, мы можем внести в таблицу 16 строк распределения значений, показывая возможные случаи распределения истинностных значений:
Значения, стоящие в столбцах под Р(х), Q и у в какой-либо строке, составляют приписываемые рассматриваемой формуле значения. Подробности вычисления, связанные, например, с приписывание значений, внесенных в девятую строку табли-
цы, заключаются в следующем. Сперва мы подставляем приписываемые значения в формулу и получаем
Чтобы приписать
значение формуле
•,
мы
должны вычислить
как
логическую функцию х. Со-
ответствующая таблица дана ниже:
Поскольку
истинностное значение импликации есть
1 для всех значений, приписываемых
получит
значение 1. Поскольку f3 (а) = 0, то формула 1 & f3 (а) будет иметь значение — 0. Наконец, на основании таблицы для V (дизъюнкции) вся формула в целом получит значение 1 .Резюмируем все шаги этого вычисления в табличной форме: