
- •Глава 1. История логики.
- •Глава 2. Предмет и значение теоретической логики.
- •Глава 3. Традиционная логика.
- •Глава 4. Символическая логика.
- •Глава 5. Неклассическая логика.
- •Глава 6. Логика и методология научного знания.
- •Глава 7. Практическая логика
- •Глава 1
- •1.1.1. Элементы логики у Парменида, Гераклита и Зенона
- •1.1.2. Логико-риторические проблемы у софистов
- •1.1.4. Логические идеи представителей мегарской школы
- •1.1.5. Логико-методологические идеи Платона
- •1.2.1. Методология Аристотеля
- •1.2.2. Учение о суждениях
- •1.2.3. Теория силлогизма
- •1.3.2. Логика эпикурейцев
- •1.3.3. Логика скептиков
- •1.4.1. Логические идеи Фомы Аквинского
- •1.4.2. Эпистемология Дунса Скота
- •1.4.3. Эпистемология и логика Уильяма Оккама
- •1.4.4. Основные средневековые типы логико-методологического мировоззрения
- •1.5.1. Логические идеи Пьера Рамэ
- •1.6.1. Принципы формально-логического рационализма
- •1.6.2. Новая философия Лейбница
- •1.6.3. Универсальная характеристика
- •1.6.4. Концепция о ясных и отчетливых понятиях
- •1.6.5. Определение понятия тождества и достаточного основания
- •1.7.1. Теория познания Канта
- •1.7.2. Аналитическое и синтетическое знание
- •1.7.3. Трансцендентальная логика
- •1.7.4. Чистые категории рассудка
- •1.8.1. Философская система Гегеля
- •1.8.2. Диалектическая логика Гегеля
- •Глава 2
- •2.1.1. Опыт и рассуждение в науке
- •2.1.2. Мышление как предмет изучения теоретической логики
- •2.1.3. Язык и мышление. Естественный и искусственный языки
- •2.2.1. Роль языка в мыслительных и речевых актах
- •2.2.2. Речевые акты и фреймы знания
- •2.2.3. Суждение, рассуждение, умозаключение
- •2.2.4. Структура рассуждения
- •2.3.1. Понятие закона мышления
- •2.3.2. Закон тождества
- •2.3.3. Закон противоречия
- •2.3.4. Формы противоречий
- •2.3.5. Закон исключенного третьего
- •2.3.6. Закон достаточного основания
- •2.4.1. Исторический метод
- •2.4.2. Аксиоматический метод
- •2.4.3. Метод формализации
- •2.4.4. Логический синтаксис и логическая семантика
- •2.4.5. Логические исчисления
- •Глава 3
- •3.1.1. Знак: смысл и значение
- •3.1.2. Дескриптивные и логические термины
- •3.1.3. Понятие как форма мышления
- •3.1.4. Объем и содержание понятия
- •3.1.5. Образование понятий
- •3.1.6. Виды понятий
- •3.1.7. Отношения понятий по объему
- •3.1.8. Отношения между понятиями по содержанию
- •3.2.1. Логическая структура суждения
- •3.2.2. Суждение и вопрос
- •3.2.3. Качественные и количественные характеристики суждений
- •3.2.4. Совместимые и несовместимые суждения. Логический квадрат
- •3.3.1. Определение как логическая операция
- •3.3.2. Виды определений
- •3.3.3. Правила корректных определений
- •3.3.4. Приемы, сходные с определением
- •3.3.5. Деление понятий
- •3.3.6. Виды и правила деления понятий
- •3.4.1. Природа и виды умозаключений
- •3.4.2. Умозаключение по логическому квадрату
- •3.4.3. Простой категорический силлогизм
- •3.4.4. Аксиома силлогизма
- •3.4.5. Правила силлогизма
- •3.4.6. Общая характеристика фигур силлогизма
- •3.4.7. Модусы фигур силлогизма
- •3.5.1. Непосредственное и опосредованное доказательство
- •3.5.2. Значение доказательств в науке
- •3.5.3. Строение и структура доказательства
- •3.5.4. Виды доказательств
- •3.5.5. Опровержение
- •3.5.6. Условия и правила, обеспечивающие эффективность доказательства. Основные ошибки
- •3.6.1. Природа индуктивного умозаключения
- •3.6.2. Понятие аналогии
- •3.6.4. Основные виды индукции и индуктивных умозаключений
- •3.6.5. Популярная и научная индукция
- •3.7.1. Специфика гипотезы
- •3.7.2. Виды гипотез
- •3.7.3. Основные этапы разработки гипотезы
- •3.7.4. Проверка гипотезы
- •Глава 4
- •4.1.1. Логические союзы
- •4.1.2. Язык логики высказываний
- •4.1.3. Понятие правильно построенного высказывания (ппв) определяется таким образом:
- •4.1.4. Понятие формулы логики высказываний
- •4.2.1. Семантическая таблица отрицания
- •4.2.2. Семантическая таблица конъюнкции
- •4.2.3. Семантическая таблица дизъюнкции
- •4.2.4. Семантическая таблица импликации
- •4.2.5. Семантическая таблица эквивалентности
- •4.3.1. Порядок логических действий
- •4.3.2. Табличный способ исчисления истинностных значений
- •4.4.1. Закон двойственности
- •4.4.2. Понятие самодвойственной формулы
- •4.4.3. Равносильные формулы
- •4.4.4. Свойства равносильности
- •4.5.1. Понятие тождественно-истинной формулы
- •4.5.2. Понятие тождественно-ложной формулы
- •4.5.3. Некоторые свойства тождественно-истинных формул:
- •4.6.1. Понятие нормальной формы
- •4.6.2. Процедура приведения к нормальной форме
- •4.6.3. Проблема разрешимости
- •4.8.1. Понятие логического вывода
- •4.8.2. Правила вывода
- •4.8.3. Правило построения прямого доказательства
- •4.8.4. Косвенное доказательство
- •4.8.5. Сильное (классическое) косвенное доказательство
- •4.8.6. Аксиоматическое представление логики высказываний
- •4.8.7. Полнота классического исчисления высказываний
- •4.9.2. Исчисление предикатов. Общезначимость
- •4.9.3. Тождественно-истинные формулы логики предикатов
- •4.9.4. Логическое следование
- •4.9.5. Естественный вывод в логике предикатов
- •4,9.6, Специфические законы логики предикатов
- •4.9.8. Свойства теорий первого порядка
- •4.9.9. Секвенции
- •Глава 5
- •5.1.1. Элементы модальной логики в античности
- •5.1.2. Понятия необходимости и возможности
- •5.1.3. Алетические модальные исчисления
- •5.1.4. Естественный вывод в алетических исчислениях
- •5.2.1. Анализ норм
- •5»2.2. Деонтические исчисления
- •5.3.1. Деонтическая система «Deontic»
- •5.3.2. Деонтическая система р
- •5.3.3. Деонтическая система sdl
- •5.3.4. Деонтическая система dt
- •5.3.5. Семейство деонтических систем 01 1— 01 4
- •5.4.1. Понятие деонтически возможного мира
- •5.4.3. Условия истинности деонтических формул
- •5.5.1. Оценки и нормы
- •5.5.2. Проблема истинности оценок
- •5.5.3. Логика оценок
- •Глава 6
- •6.1.1. Логико-математические методы
- •6.1.1. Логико-математические методы
- •6.1.2. Виды познания
- •6.1.3. Структура познавательного процесса
- •6.1.4. Общенаучные методы познания
- •6.1.5. Общенаучные подходы к построению научного знания
- •6.1.6. Методология научного познания
- •6.1.7. Проблема истины в познании
- •6.2.1. Эмпирическая интерпретация
- •6.2.2. Конструктивные объекты
- •6.2.3. Логический язык эмпирической интерпретации
- •6.3.1. Структура математических теорий
- •6.3.2. Структура теорий опытных (эмпирических) наук
- •6.3.3. Научная теория как обобщенное идеальное отображение мира
- •6.4.1. Логическое уточнение понятия теории
- •6.4.2. Логические отношения между теориями
- •6.4.3. Сравнение теорий с помощью определений
- •6.5.1. Дедуктивно-номологическое объяснение
- •6.5.2. Рациональное объяснение
- •6.5.3. Интенциональное объяснение. Практический силлогизм
- •Глава 7
- •7.5.1. Тактика аргументации
- •7.5.2. Уловки и приемы аргументации
- •7.5.3. Моральный кодекс спора
4.4.1. Закон двойственности
Если
—
формулы, двойственные соответственно
фор-
мулам А и В и
если А равносильно В, то
равносильно
Доказательство.
Пусть
—
формулы, которые по-
лучаются из не
содержащих знака
формул
А и В заменой всех переменных в А и В
соответственно отрицаниями этих
переменных. Тогда, если А равносильно
В, то
равносильно
так как согласно
определению равносильности А и В
принимают одинаковые логические значения
при любых логических значениях общего
списка своих переменных, а значит, и при
любых логических значениях их отрицаний.
Но если А' равносильно В', то
равносильно
А
так как двойственная А формула
равносильна
и
двойственная В формула
равносильна
,
то в силу транзитивности отношения
равносильности
равносильно
4.4.2. Понятие самодвойственной формулы
Формула А называется самодвойственной, если А равносильно А*. Например, самодвойственной является формула (р & q) V (р & г) V (q & г).
Формула А называется несамодвойственной, если в ее таблице имеются хотя бы два набора логических значений переменных, получающихся друг из друга заменой каждого логического значения на противоположное, для которых А получает в заключительном столбце одно и то же логическое значение.
4.4.3. Равносильные формулы
Иногда различные по своей структуре формулы таковы, что одинаковым наборам логических значений переменных во входных столбцах таблиц этих формул отвечают одинаковые логи-
ческие значения в соответствующих строках заключительных столбцов.
одинаковым набором логических знаний переменных р и q во входных столбцах отвечают одинаковые логические значения в соответствующих строках заключительных столбцов. О подобных формулах говорят, что они равносильны.
Определение. Пусть А и В — формулы, Е1 , Е2.En
список всех пропозициональных переменных, входящих по крайней мере в одну из них. Будем говорить, что А и В — равносильные формулы (и писать: А равносильно В), если при любых логических значениях Е1 Е2, . En логические значения А и В совпадают.
Равносильными, следовательно, могут быть не только такие формулы, в которые входят одни и те же пропозициональные переменные, но и такие, в которые входят разные переменные.
4.4.4. Свойства равносильности
Отношение равносильности имеет следующие свойства:
• во-первых, рефлексивно, т. е. А равносильно А;
• во-вторых, симметрично, т. е. если А равносильно В, то В равносильно А;
• в-третьих, транзитивно, т. е. если А равносильно В и В равносильно С, то А равносильно С.
Два высказывания называются равнозначными, если они могут быть получены из равносильных формул А и В в результате замены всех входящих в них переменных конкретными высказываниями.
Некоторые равносильные формулы
(О
Эта равносильность означает, что двойное отрицание любой формулы равносильно самой этой формуле: формула —
истинна, когда
истинна формула А, и ложна, когда А ложна.
В этом легко убедиться, построив таблицу,
во входном столбце которой выписаны
все истинностные значения входящих в
нее переменных.
Пусть А, В, С любые формулы, тогда
А & В равносильно В & А (2)
А & (В & С) равносильно (А & В) & С (3)
Равносильности (2) и (3) свидетельствуют о коммутативности и ассоциативности конъюнкции.
А V В равносильно В V А; (4)
А V (В V С) равносильно (А V В) V С (5)
Данные равносильности свидетельствуют о коммутативности и ассоциативности дизъюнкции.
А V (В & С) равносильно (А V В) & (А V С) (6)
(В & С) V А равносильно (А V В) & (А V С) (6') А & (В V С) равносильно (А & В) V (А & С) (7) (В V С) & А равносильно (А & В) V (А & С) (7*)
Данные равносильности свидетельствуют о дистрибутивности дизъюнкции относительно конъюнкции и дистрибутивности конъюнкции относительно дизъюнкции.
А & А равносильно А (8)
А V А равносильно А (9)
Указанные равносильности называются законами идемпотентности конъюнкции и дизъюнкции.
(Ю)
(11)
Данные равносильности называются законами де Моргана.
(12)
-4.5
ТОЖДЕСТВЕННО-ИСТИННЫЕ И ТОЖДЕСТВЕННО-ЛОЖНЫЕ ФОРМУЛЫ
4.5
До сих пор мы имели дело с формулами, которые при одних логических значениях своих переменных были истинными, а при других — ложными. Но существуют формулы, которые при любых наборах логических значений переменных получают в заключительном столбце таблицы логическое значение «истина». Такие формулы называют тождественно-истинными формулами, или логическими тождествами.
Рассмотрим, например, формулу
и построим ее таблицу:
Мы видим, что независимо от того, принимает пропозициональная переменная р значение «истина» или «ложь», формула р —>/> имеет значение «истина». Так, высказывания Если Ленинград большой город, то Ленинград большой город; Если сегодня пасмурный день, то сегодня пасмурный день и Если 12 простое число, то 12 простое число — истинны независимо от того, истинно или ложно фактически, что Ленинград большой город и сегодня пасмурный день, и является ли действительно 12 простым числом.
Построим теперь
для формулы
ее
таблицу:
Мы видим, что независимо от того, принимает переменная р значения «истина» или «ложь», формула р V ~р имеет значение «истина».