
- •Методика преподавания математики
- •Методика преподавания математики
- •(Часть 4)
- •Утверждаю Декан педагогического факультета
- •Распределение по семестрам при дневной форме обучения
- •Распределение по семестрам при заочной форме обучения
- •Содержание
- •Пояснительная записка
- •Объем дисциплины и виды учебной работы
- •Модуль 2. Вопросы частной методики преподавания математики
- •Тема10. Формирование вычислительных навыков
- •Требования к знаниям и умениям студентов
- •1. План
- •2. Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •3. Контрольные вопросы
- •4. Краткое содержание вопросов плана
- •4.1. Характеристика вычислительных навыков
- •4.2. Этапы формирования вычислительных навыков
- •4.3. Формирование вычислительных навыков на основе организации повторения
- •4.4. Анализ качества устных вычислительных навыков учащихся начальных классов
- •Анализ вычислительных навыков
- •5. Практикум Практическое занятие 1.
- •Практическое занятие 2.
- •Тема 2. Методика формирования навыков письменного умножения и деления
- •Лабораторная работа № 7
- •Литература
- •Методические задания для самостоятельной работы
- •Комментарии
- •Тестовый материал по изученной теме
- •Тема11: Доли и дроби в. Курсе математики начальных классов Требования к знаниям студентов
- •1. План:
- •2. Литература. Основная литература
- •Дополнительная литература
- •3. Контрольные вопросы:
- •4. Краткое содержание вопросов плана
- •4.1. Понятие дроби
- •4.2. Дроби (доли) в начальной школе (3 класс)
- •4.3. Дроби в 4 классе
- •4.4. Дроби величин
- •5. Практикум Практическое занятие 1.
- •6. Методические задания для самостоятельной работы
- •7. Тестовый материал по изученной теме
- •Тема 12. Методика изучения величин в начальной школе Требования к знаниям студентов
- •2. Литература.
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •3. Контрольные вопросы:
- •4. Краткое содержание вопросов плана
- •4.1. Величина как одно из основных понятий курса математики начальных классов
- •4.2. Общий подход к изучению величин в курсе математики начальной школы
- •4.3. Методика формирования понятия длины и навыков ее измерения
- •4.4. Методика изучения измерения и вычисления площади и системы мер площади.
- •4.5. Методика изучения массы и единиц ее измерения.
- •4.6. Методика изучения времени и единиц его измерения.
- •4.7. Текстовые задачи на время.
- •4.8. Методика изучения скорости.
- •4.9. Задачи на движение.
- •Практикум Практическое занятие 1.
- •Практическое занятие 2.
- •6. Методические задания для самостоятельной работы
- •Комментарии
- •Тестовый материал по изученной теме
- •Тема 13. Методика обучения младших школьников элементам алгебры
- •1. План:
- •2. Литература.
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •3. Контрольные вопросы
- •4. Краткое содержание вопросов плана
- •4.1. Характеристика алгебраического материала в курсе математики начальной школы
- •4.2. Цели изучения алгебраических понятий в начальной школе.
- •4.3. Методика изучения числовых выражений
- •Формирование понятия переменной
- •Изучение равенств и неравенств
- •Изучение уравнений
- •Ознакомление учащихся с функциональной зависимостью
- •5. Практикум. Практическое занятие 1.
- •Практическое занятие 2
- •Лабораторная работа № 8
- •Лабораторная работа № 9
- •6. Методические задания для самостоятельной работы
- •Комментарии
- •7. Тестовый материал
- •Тема 14. Методика работы
- •Над геометрическим материалом
- •В начальной школе
- •Требования к знаниям студентов
- •Литература
- •2.1. Основная литература
- •2.2. Дополнительная литература
- •Контрольные вопросы
- •Геометрические понятия в начальной школе
- •Задания на измерение и вычисление
- •1 Класс
- •2 Класс
- •3 Класс
- •4 Класс
- •Задания на построение
- •1 Класс
- •2 Класс
- •3 Класс
- •4 Класс
- •Практикум Практическое занятие 1.
- •Лабораторная работа № 10
- •Методические задания для самостоятельной работы
- •Комментарии
- •7. Тестовый материал по изученной теме
- •Тема 15. Организация творческой деятельности
- •Дополнительная литература
- •3. Контрольные вопросы
- •5. Практикум Практическое занятие 1.
- •Комментарии
- •Литература для самостоятельной работы студентов
- •Дополнительная литература
- •Практическое занятие 2.
- •Вопросы к экзамену Модуль 2
4.4. Анализ качества устных вычислительных навыков учащихся начальных классов
Для того чтобы дети в совершенстве овладели вычислительной культурой, необходимо еще в начальной школе научить их выполнять следующие устные вычисления:
• складывать и умножать однозначные числа (6 + 3; 6 + 7; 5 • 7);
• прибавлять к двузначному числу однозначное число (11 + 3; 87 + 9);
• вычитать из однозначного или двузначного числа однозначное число: преимущественно в пределах 20
(9 - 3; 19 - 3; 13 - 9);
• складывать несколько однозначных чисел (7 + 8 + 9);
• складывать и вычитать двузначные числа (30 + 20; 70 - 60; 34 - 20; 73 - 20; 34 + 22; 73 - 22; 34 + 26; 70 - 28; 73 - 28);
• делить однозначное или двузначное число на однозначное число нацело или с остатком (9 : 6; 9 : 3; 29 : 7; 84 : 7; 85 : 7).
Из первого пункта известно, что полноценный вычислительный навык характеризуется шестью качествами: правильностью, осознанностью, рациональностью, обобщенностью, беглостью и прочностью. На основе выделенных принципов учителю бывает необходимо проверить результативность обучения вычислительным навыкам, проводя их поэлементный анализ.
Беглость вычислений и правильность полученных результатов можно проверить в форме арифметического диктанта, содержащего 15 - 20 простых выражений. Диктовать каждое из них нужно только один раз, применяя в формулировке слова: «прибавить», «вычесть», «умножить», «разделить». При этом дети записывают только ответы. Темп диктовки для табличных случаев и действий с нулем и единицей примерно 10 с, для случаев с применением правил и свойств- 15 с.
С.А. Зайцева, И.Б. Румянцева, И.И. Целищева предложили следующие примерные образцы диктантов.
Задание: найти значения выражения и записать только ответ.
• 6 + 2; 7 - 3; 8 - 5; 10 - 8; 7 + 3; 6 + 7; 13 - 8; 49 + 1;60 - 1; 26 - 0; 34 + 0; 11 + 3; 19 - 5; 70 - 30; 70 + 20; 73 - 20; 54 + 30; 72 + 8; 72 - 8; 40 - 6.
• 6 · 7; 8 · 4; 56 : 8; 7 · 9; 30 : 10; 0 · 13; 77 · 1; 16 : 1; 0 : 5; 48 + 11; 92 - 6; 84 : 7; 34 + 2; 70 - 28; 36 + 48; 73 - 49; 16 · 5; 9 : 6; 48 - 23.
• 8 • 400; 560 : 8; 270 : 3; 60 • 70; 810 : 90; 76 : 8; 0 : 1002; 4108 - 0; 302:1; 50 • 16;
720 : 3; 720 : 30; 350 • 2;
240 - 70; 360 + 48; 111 + 89; 130 - 38; 340 + 260; 700 - 280; 1000 - 299.
Задания для математического диктанта можно подобрать по приведенному образцу, учитывая возраст учащихся и пройденный материал. За работу выставляются отметки в соответствии со следующими рекомендациями: «5» - если 0 ошибок; «4» - если 1 ошибка; «3» = если 2 - 3 ошибки; «2» - если 4 ошибки и более.
Для проверки правильности и осознанности выбора вычислительных операций, приводящих к искомому результату, можно предложить выполнить письменно самостоятельную работу, в которой рассуждения фиксируются подробно (15+ 17 = 15 + (10 + 7) = (15 + 10) + 7 = 25 + 7 = 32), или провести устный контроль. В последнем случае каждому ученику предлагается карточка, на которой написаны 3 - 4 выражения, и задание: найти значение выражения, объясняя запись подробно. Названные авторы советуют заготовить не менее четырех вариантов карточек, аналогичных ниже представленным:
• 23 + 14; 56 - 23; 17 + 3; 20 – 8.
• 42 : 2; 65 : 5; 7 · 13.
• (450 + 550) : 2; 720 : 30; 5 · (25 · 40).
Завершив работу, ученик рассказывает учителю о правиле, которое применил при вычислении. Например: при вычислении значения выражения 23 + 14 применяю правило прибавления суммы к числу.
В ходе проверки рациональности вычислительных навыков дается самостоятельная работа, содержащая 1 - 2 выражения, со следующим заданием: найти значение выражения разными способами и подчеркнуть удобный способ. Например:
• 28 + 36;
• 7 · 8 + 7 · 2;
• (1924 + 256) + 1744.
Оценка обобщенности вычислительных навыков способствует выявлению умения переносить значения в новые числовые условия. При проверке данного качества задание предлагается в следующей формулировке: попробуйте найти значение данного выражения самостоятельно, записав подробно объяснение. При этом в упражнении должен содержаться числовой материал, который школьникам ранее не встречался, но вычислительный прием, на котором основано его решение, ими уже был отработан на других примерах:
• 100 - 24 = 100 - (20 + 4) = 80 - 4 = 76.
75 • 5 = (70 + 5) • 5 = 70 • 5 + 5 • 5 = 350 + 25 = 375.
• 284 • 3 = (200 + 80 + 4) • 3 = 200 • 3 + 80 • 3 + 4 • 3 = 600 + 240 + + 12 = 852.
Для проверки прочности навыка рекомендуется в конце учебного года в каждом из классов провести самостоятельную работу и включить в нее все вычислительные приемы, определенные программой. Аналогичный контроль следует провести с тем же составом класса в начале следующего учебного года до организации повторения материала, т.е. не позднее 2 сентября. Сравнение результатов работ позволит судить о прочности усвоения вычислительных приемов.