Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety (1).docx
Скачиваний:
6
Добавлен:
01.04.2025
Размер:
138.74 Кб
Скачать

19. Факторные экспериментальные планы.

Факторные экспериментальные планы Применяются для проверки сложных гипотез о взаимосвязях между переменными. В факторном эксперименте проверяются, как правило, два типа гипотез: 1) гипотезы о раздельном влиянии каждой из независимых переменных; 2) гипотезы о взаимодействии переменных. Факторный план заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп при этом равно числу сочетаний. ^ Факторный план для двух независимых переменных и двух уровней (2 х 2). Это наиболее простой из факторных планов. Его схема выглядит так Данный план выявляет эффект воздействия двух независимых переменных на одну зависимую. Экспериментатор сочетает возможные переменные и уровни. Иногда используются четыре независимые рандомизированные экспериментальные группы, Для обработки результатов применяется дисперсионный анализ по Фишеру. Существуют более сложные версии факторного плана: З х 2 и З х З и т.д. Дополнение каждого уровня независимой переменной увеличивает число экспериментальных групп. Латинский квадрат. Является упрощением полного плана для трех независимых переменных, имеющих два и более уровней. Принцип латинского квадрата состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым значительно сокращаются количество групп и экспериментальная выборка в целом. Например, для трех независимых переменных (L, М, N) с тремя уровнями у каждой (1, 2, 3 и N(А, В, С)) план по методу «латинского квадрата» будет выглядеть так. В этом случае уровень третьей независимой переменной (А, В, С) встречается в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных. Применение латинских букв А, В, С для обозначения уровней третьей переменной традиционно, поэтому метод и получил название «латинский квадрат». «Греко-латинский квадрат». Этот план применяется в случае, если необходимо исследовать влияние четырех независимых переменных. Он строится на основе латинского квадрата для трех переменных, при этом к каждой латинской группе плана присоединяется греческая буква, обозначающая уровни четвертой переменной. Схема для плана с четырьмя независимыми переменными, каждая из которых имеет три уровня, будет выглядеть так: Для обработки данных, полученных в плане «греко-латинский квадрат», применяется метод дисперсионного анализа по Фишеру. Главная проблема, которую позволяют решить факторные планы, определение взаимодействия двух и более переменных. Эту задачу невозможно решить, применяя несколько обычных экспериментов с одной независимой переменной. В факторном плане вместо попыток «очистить» экспериментальную ситуацию от дополнительных переменных (с угрозой для внешней валидности) экспериментатор приближает ее к реальности, вводя некоторые дополнительные переменные в разряд независимых. При этом анализ связей между изучаемыми признаками позволяет выявить скрытые структурные факторы, от которых зависят параметры измеряемой переменной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]