Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен по нейрофизиологии .doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
236.03 Кб
Скачать

6. Мембранный потенциал покоя – разность потенциалов между наружной и внутренней стороной этой мембраны (сравнение содержания калия и натрия во внутренней и внешней среде клетки).

При этом наружная мембрана несет на себе положительный заряд по отношению к внутренней ее стороне.

Концентрации основных одновалентных ионов – хлора, калия и натрия – внутри клетки существенно отличаются от их содержания в омывающей клетки внеклеточной жидкости.

- главным внутриклеточным катионом (положительно заряженным ионом) является калий;

- внутриклеточные анионы (отрицательно заряженные ионы) представлены преимущественно остатками аминокислот и других органических молекул.

- основной внеклеточный катион – натрий;

- внеклеточный анион – хлор.

Такое распределение ионов создается в результате двух факторов:

1. Наличия отрицательно заряженных органических молекул внутри клетки.

2. Существования в клеточной мембране систем активного транспорта, «перекачивающих» натрий из клетки, а калий в клетку.

Активный транспорт ионов/ионный насос – механизм, который может переносить ионы из клетки или внутрь клетки против концентрационных градиентов (локализован в поверхностной мембране клетки и представляет собой комплекс ферментов, использующих для переноса энергию, освобождающуюся при гидролизе АТФ).

Быстрое удаление натрия приводит к тому, что в клетке накапливается только калий, который притягивается отрицательными зарядами органических анионов и накачивается натрий-калиевым насосом.

Мембраны имеют ионные каналы. Ионные (селективные) каналы пропускают определенные ионы. В зависимости от ситуации открыты те или иные каналы.

В покое открыты калиевые, а натриевые – практически все закрыты.

В нервных клетках всегда работают насосные механизмы, которые переносят ионы против градиента концентрации.

Градиент концентрации – разница между концентрацией от меньшего к большему.

Между наружной и внутренней поверхностью всех клеток существует разность потенциалов.

Потенциал покоя варьирует от -40 мВ до -95 мВ в зависимости от особенности той или иной клетки.

Потенциал покоя нервных клеток обычно равен от -30 мВ до -70 мВ.

Потенциал покоя – заряд на мембране в состоянии покоя.

Одним из основных свойств нервной клетки является наличие постоянной электрической поляризации ее мембраны – мембранного потенциала. Мембранный потенциал поддерживается на мембране до тех пор, пока клетка жива, и исчезает только с ее гибелью.

Потенциал покоя возникает прежде всего в связи с асимметричным распределением калия (ионная асимметрия) по обе стороны мембраны. Так как концентрация его в клетке примерно в 30 раз выше, чем во внеклеточной среде, существует трансмембранный концентрационный градиент, способствующий диффузии калия из клетки.

Активный транспорт ионов/ионный насос – механизм, который может переносить ионы из клетки или внутрь клетки против концентрационных градиентов (локализован в поверхностной мембране клетки и представляет собой комплекс ферментов, использующих для переноса энергию, освобождающуюся при гидролизе АТФ).

Асимметрия ионов хлора тоже может поддерживаться процессом активного транспорта.

В покое постоянная электрическая поляризация клеточной мембраны создается в основном за счет диффузионного тока ионов калия через клеточную мембрану.

Наличие ионных градиентов и постоянной электрической поляризации мембраны является основным условием, обеспечивающим возбудимость клетки. Создаваемый этими двумя факторами электрохимический градиент представляет собой запас потенциальной энергии, который все время находится в распоряжении клетки и который может быть немедленно использован для создания активных клеточных реакций.

7. Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном потенциала действия. Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Для каждого типа ионов — натрия и калия — имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией. Выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около 1/1000с(1мс).

Подобные потенциалы действия могут возникать и в других клетках, назначение которых — возбуждаться и передавать это возбуждение другим клеткам. Например, сердечная мышца имеет в своем составе специальные мышечные волокна, обеспечивающие бесперебойную работу сердца в автоматическом режиме. В этих клетках также генерируются потенциалы действия.

Нейрон способен к возбуждению, которое состоит в том, что мембрана нейрона в состоянии покоя имеет потенциал порядка — 70 мВ (отрицательность в цитоплазме), а в состоянии возбуждения приобретает потенциал +55 мВ. Таким образом, абсолютная величина потенциала действия — около 125 мВ. Длительность потенциала действия нейрона составляет всего около 1 мс (1/1000 с) .

Далее это возбуждение (потенциал действия) должно передаться другому нейрону или какой-то другой клетке, например мышечной, железистой и др.

Разновидностью электрических процессов является потенциал действия, который возникает тогда, когда на мембрану клетки действует раздражитель пороговой силы. При действии же на мембрану раздражителя подпороговой силы наблюдается местный (локальный) потенциал, который проявляется уменьшением мембранного потенциала или деполяризацией. Последняя является результатом увеличения натриевого тока в цитоплазму. Локальный ответ подчиняется ряду закономерностей:

- локальный ответ распространяется по мере удаления от места раздражения его величина постепенно уменьшается до нуля,

- он подчиняется закону градуальности: чем больше величина подпорогового раздражителя, тем выраженнее локальный ответ (деполяризация),

- локальный ответ не имеет периода рефрактерности (невозбудимости);

- локальный ответ способен суммироваться.

Если на мембрану действует раздражитель пороговой силы, то возникает потенциал действия, при этом на мембране наблюдается изменение величины мембранного потенциала, которое носит фазовый характер.

Первая фаза - фаза деполяризации. Связана с уменьшением величины мембранного потенциала и обусловлена увеличением натриевого тока в цитоплазму. Фактически это локальный ответ.

Вторая фаза - фаза инверсии или перезарядки мембраны. Как только под влиянием порогового раздражителя деполяризация мембраны достигает критического уровня - это снижение потенциала улавливается сенсором напряжения канала, который, в свою очередь, запускает активационную систему, в результате чего открываются все натриевые каналы и возникает лавинообразный натриевый ток внутрь клетки.

За фазой перезарядки мембраны (инверсия) следует третья фаза - фаза реполяризации - восстановления мембранного потенциала, которая в первое время идет преимущественно за счет открытия калиевых каналов и увеличения калиевого тока из цитоплазмы на поверхность мембраны. И только несколько позже, по-видимому, подключается система активного транспорта, осуществляющая перенос ионов натрия из цитоплазмы на поверхность мембраны, а ионов калия с поверхности мембраны - в цитоплазму.

Составные элементы потенциала действия. Перед потенциалом действия должен быть латентный период – период времени от начала нанесения раздражения до начала появления первого элемента потенциала действия. После латентного периода регистрируется локальный ответ, связанный с деполяризацией мембраны, обусловленной увеличением медленного натриевого тока. Локальный ответ переходит в основной зубец потенциала действия (пик), который имеет восходящее и нисходящее колено. Величина основного зубца составляет 110-120 мВ, а продолжительность в нервном волокне - 0,5-2 мс. За основным зубцом потенциала действия идут следовые потенциалы: 1) следовая электроотрицательность, продолжающаяся 4-6 мс, связанная с задержкой калиевого тока (в этот момент мембрана остается частично деполяризованной), 2) следовая электроположительность, продолжающаяся 30-40 мс (в этот момент наблюдается увеличение мембранного потенциала, который становится больше исходного –гиперполяризация; состояние гиперполяризации обусловлено увеличением калиевого тока из цитоплазмы на поверхность мембраны, который становится больше исходного).

8. Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе.

Отдельное миелиновое нервное волокно состоит из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и аксоплазму. Миелиновая оболочка является продуктом деятельности шванновской клетки и состоит на 80% из липидов, обладающих высоким омическим сопротивлением, и на 20% из белка.

Миелиновая оболочка не покрывает сплошным покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого цилиндра, называемые узловыми перехватами (перехваты Ранвье). Длина участков между этими перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами

Безмиелиновые нервные волокна покрыты только шванновской оболочкой.

Проведение возбуждения в безмиелиновых волокнах отличается от такового в миелиновых волокнах благодаря разному строению оболочек. В безмиелиновых волокнах возбуждение постепенно охватывает соседние участки мембраны осевого цилиндра и так распространяется до конца аксона. Скорость распространения возбуждения по волокну определяется его диаметром.

В нервных безмиелиновых волокнах, где процессы метаболизма не обеспечивают быструю компенсацию расхода энергии на возбуждение, распространение этого возбуждения идет с постепенным ослаблением — с декрементом. Декрементное проведение возбуждения характерно для низкоорганизованной нервной системы.

У высших животных благодаря прежде всего наличию миелиновой оболочки и совершенства метаболизма в нервном волокне возбуждение проходит, не затухая, бездекрементно. Этому способствуют наличие на всем протяжении мембраны волокна равного заряда и быстрое его восстановление после прохождения возбуждения.

В миелиновых волокнах возбуждение охватывает только участки узловых перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения по волокну называется сальтаторным (скачкообразным). В узловых перехватах количество натриевых каналов достигает 12 000 на 1 мкм , что значительно больше, чем в любом другом участке волокна. В результате узловые перехваты являются наиболее возбудимыми и обеспечивают большую скорость проведения возбуждения. Время проведения возбуждения по миелиновому волокну обратно пропорционально длине между перехватами.

Проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) времени. Это свидетельствует о малой утомляемости нервного волокна. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохождении возбуждения.

В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых каналов.

Дж. Эрлангер и X. Гассер (1937) впервые классифицировали нервные волокна по скорости проведения возбуждения. Различная скорость проведения возбуждения по волокнам смешанного нерва выявляется при использовании внеклеточного электрода. Потенциалы волокон, проводящих возбуждение с неодинаковой скоростью, регистрируются раздельно.

В зависимости от скорости проведения возбуждения нервные волокна делят на три типа: А, В, С. В свою очередь волокна типа А подразделяют на четыре группы: Аα, Aβ, Aγ, Aδ. Наибольшей скоростью проведения (до 120 м/с) обладают волокна группы Аα, которую составляют волокна диаметром 12—22 мкм. Другие волокна имеют меньший диаметр и соответственно проведение возбуждения по ним происходит с меньшей скоростью (табл. 2.4).

Нервный ствол образован большим числом волокон, однако возбуждение, идущее по каждому из них, не передается на соседние. Эта особенность проведения возбуждения по нерву носит название закона изолированного проведения возбуждения по отдельному нервному волокну. Возможность такого проведения имеет большое физиологическое значение, так как обеспечивает, например, изолированность сокращения каждой нейромоторной единицы.

Способность нервного волокна к изолированному проведению возбуждения обусловлена наличием оболочек, а также тем, что сопротивление жидкости, заполняющей межволоконные пространства, значительно ниже, чем сопротивления мембраны волокна. Поэтому ток, выйдя из возбужденного волокна, шунтируется в жидкости и оказывается слабым для возбуждения соседних волокон. Необходимым условием проведения возбуждения в нерве является не просто его анатомическая непрерывность, но и физиологическая целостность. В любом металлическом проводнике электрический ток будет течь до тех пор, пока проводник сохраняет физическую непрерывность. Для нервного «проводника» этого условия недостаточно: нервное волокно должно сохранять также физиологическую целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, аммиаком и др.), проведение возбуждения по волокну прекращается. Другим свойством, характерным для прове­дения возбуждения по нервному волокну, является способность к двустороннему проведению. Нанесение раздражения между двумя отводящими электродами на поверхности волокна вызовет электри­ческие потенциалы под каждым из них.

9. Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).

Классификация синапсов. Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксосоматические, аксоаксональные, аксодендритические, дендросоматические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Электрические синапсы. Морфологически представляют собой слияние, или сближение, участков мембран. В последнем случае синаптическая щель не сплошная, а прерывается мостиками полного контакта. Электрические синапсы обладают односторонним проведением возбуждения.

Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.

Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Нервно-мышечные синапсы обеспечивают проведение возбуждения с нервного волокна на мышечное благодаря медиатору ацетилхолину, который при возбуждении нервного окончания переходит в синаптическую щель и действует на концевую пластинку мышечного волокна.

Нервно-мышечный синапс передает возбуждение в одном направлении: от нервного окончания к постсинаптической мембране мышечного волокна, что обусловлено наличием химического звена в механизме нервно-мышечной передачи.

Скорость проведения возбуждения через синапс намного меньше, чем по нервному волокну, так как здесь тратится время на активацию пресинаптической мембраны, переход через нее кальция, выделение ацетилхолина в синаптическую щель, деполяризацию постсинаптической мембраны, развитие ПКП.

В нервно-мышечном синапсе в норме ацетилхолин действует на синаптическую мембрану короткое время (1—2 мс), так как сразу же начинает разрушаться ацетилхолинэстеразой. В случаях, когда этого не происходит и ацетилхолин не разрушается на протяжении сотни миллисекунд, его действие на мембрану прекращается и мембрана не деполяризуется, а гиперполяризуется и возбуждение через этот синапс блокируется.

Специально для снижения тонуса мышц, особенно при операциях, используют блокаду нервно-мышечной передачи миорелаксантами; деполяризующие мышечные релаксанты действуют на рецепторы субсинаптической мембраны (сукцинилхолин и др.), недеполяризующие мышечные релаксанты, устраняющие действие ацетилхолина на мембрану по конкуренции (препараты группы кураре).

10. Путь, который проделывает возбуждение при рефлексе, называют рефлекторной дугой. Рефлекторная дуга или рефлекторный путь представляет собой совокупность образований, необходимых для осуществления рефлекса. В неё входит цепь соединённых посредством синапсов нейронов, которая передаёт нервные импульсы от возбуждённых стимулом чувствительных окончаний к мышцам или секреторным железам.

В рефлекторной дуге выделяют следующие компоненты:

1. Рецепторы — высокоспециализированные образования, способные воспринять энергию раздражителя и трансформировать её в нервные импульсы.

2. Сенсорные (афферентные, центростремительные) нейроны, проводящие нервные импульсы от своих дендритов в центральную нервную систему. В спинной мозг сенсорные волокна входят в составе задних корешков.

З. Интернейроны (вставочные, контактные) находятся в центральной нервной системе, получают информацию от сенсорных нейронов, перерабатывают её и передают эфферентным нейронам.

4. Эфферентные (центробежные) нейроны получают информацию от интернейронов (в исключительных случаях от сенсорных нейронов) и передают рабочим органам.

5. Рабочие органы или эффекторы представляют собой либо мышцы, либо железы, поэтому рефлекторные ответы, в конечном счёте сводятся или к мышечным сокращениям (скелетных мышц, гладких мышц сосудов и внутренних органов, сердечной мышцы), или к выделению секретов желёз (пищеварительных, потовых, бронхиальных, но не желёз внутренней секреции).

Благодаря химическим синапсам возбуждение по рефлекторной дуге распространяется только в одном направлении: от рецепторов — к эффектору. В зависимости от количества синапсов различают полисинаптические рефлекторные дуги, в состав которых входит не менее трёх нейронов (афферентный, интернейрон, эфферентный). И моносинаптические рефлекторные дуги, состоящие лишь из афферентного и эфферентного нейронов. У человека моносинаптические дуги обеспечивают воспроизведение только рефлексов растяжения, регулирующих длину мышц, а все остальные рефлексы осуществляются с помощью полисинаптических рефлекторных дуг.

Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.

Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы.

Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.

Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.

Рефлекторная дуга состоит из нескольких отделов:

-рецепторов, воспринимающих раздражение и отвечающих на него возбуждением. Рецепторами могут быть окончания длинных отростков центростремительных нервов или различной формы микроскопические тельца из эпителиальных клеток, на которых оканчиваются отростки нейронов.

-нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге.

-эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

Рефлекторная дуга соматической нервной системы на пути от ЦНС к скелетной мышце нигде не прерывается в отличии от рефлекторной дуги вегетативной нервной системы, которая на пути от ЦНС к иннервируемому органу обязательно прерывается с образованием синапса - вегетативного ганглия.

Рефлекторное кольцо (рефлекторный круг, обратная афферентация). Под понятием рефлекторное кольцо (обратная афферентация, обратная связь) подразумевают совокупность образований для осуществления рефлекса и передачи информации о характере и силе рефлекторного действия в ЦНС.

Рефлекторное кольцо включает в себя рефлекторную дугу и обратную афферентацию от эффекторного органа в центральную нервную систему (например, о степени укорочения мышцы при ее рефлекторном сокращении). Понятие о рефлекторном кольце является дальнейшим развитием представлений о рефлекторной дуге.

Рефлекторное кольцо — совокупность структур нервной системы, участвующих в осуществлении рефлекса и обратной передаче информации о характере и силе рефлекторного действия в центральной нервной системе.

11. Нервный центр — совокупность нервных клеток (нейронов), необходимая для регуляции деятельности других нервных центров или исполнительных органов. Простейший нервный центр состоит из нескольких нейронов, образующих узел (ганглий). У высших животных и человека нервный центр включает тысячи и даже миллионы нейронов. Большинство функций организма обеспечивается рядом нервных центров, расположенных на различных уровнях центральной нервной системы (напр., нервный центр зрительной системы находится в промежуточном, среднем мозге и в коре больших полушарий). Нервный центр — сложное сочетание нейронов, согласованно включающихся:

в регуляцию определенной функции;

в осуществление рефлекторного акта.

Клетки нервного центра связаны между собой синаптическими контактами и отличаются огромным разнообразием и сложностью внешней и внутренней тектоники. В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Понятие нервных центров

Нервный центр — центральный компонент рефлекторной дуги, где происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

Свойства нервных центров:

-Одностороннее проведение возбуждения — возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

-Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр — центральное время рефлекса.

-Суммация возбуждения — при действии одиночного подпорогового раздражителя ответной реакции нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса — зона расположения рецепторов, возбуждение которых вызывает определенный рефлекторный акт.

Имеется 2 вида суммации: временная и пространственная.

Временная суммация - возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация — возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

-Центральное облегчение — объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны — нейронный пул. В каждом нервном центре много пулов. рической зоны.

-Окклюзия — при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны.

-Посттетаническая потенция — усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

-Рефлекторное последействие — продолжение ответной реакции после прекращения действия раздражителя:

-Высокая утомляемость нервных центров — связана с высокой утомляемостью синапсов.

-Тонус нервного центра — умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

-Высокий уровень обменных процессов и, как следствие, высокая потребность в кислороде. Чем больше развиты нейроны, тем больше необходимо им кислорода. Нейроны спинного мозга проживут без кислорода 25-30 мин, нейроны ствола головного мозга — 15-20 мин, нейроны коры головного мозга — 5-6 мин.

12. Торможение - местный нервный процесс, приводящий к угнетению или предупреждению возбуждения. Торможение является активным нервным процессом, результатом которого служит ограничение или задержка возбуждения. Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.

В настоящее время в центральной нервной системе выделяют два вида торможения: торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов и торможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение(первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную кислоту), которые вызывают на постсинаптической мембране особый тип электрических изменений, названных тормозными постсинаптическими потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI-, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали (рис. 87). По такому принципу осуществляется торможение мотонейронов.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI-. Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

13. Одним из основных элементарных актов высшей нервной деятельности является условный рефлекс. Биологическое значение условных рефлексов заключается в резком расширении числа сигнальных, значимых для организма раздражителей, что обеспечивает несравненно более высокий уровень адаптивного (приспособительного) поведения.

Условно-рефлекторный механизм лежит в основе формирования любого приобретенного навыка, в основе процесса обучения. Структурно-функциональной базой условного рефлекса служат кора и подкорковые образования мозга.

Сущность условно-рефлекторной деятельности организма сводится к превращению индифферентного раздражителя в сигнальный, значащий, благодаря многократному подкреплению раздражения безусловным стимулом. Благодаря подкреплению условного стимула безусловным ранее индифферентный раздражитель ассоциируется в жизни организма с биологически важным событием и тем самым сигнализирует о наступлении этого события.

В качестве главных клеточных элементов центрального механизма образования условного рефлекса выступают вставочные и ассоциативные нейроны коры большого мозга.

Для образования условного рефлекса необходимо соблюдение следующих правил: 1) индифферентный раздражитель (который должен стать условным, сигнальным) должен иметь достаточную силу для возбуждения определенных рецепторов; 2) необходимо, чтобы индифферентный раздражитель подкреплялся безусловным стимулом, причем индифферентный раздражитель должен либо несколько предшествовать, либо предъявляться одновременно с безусловным; 3) необходимо, чтобы раздражитель, используемый в качестве условного, был слабее безусловного. Для выработки условного рефлекса необходимо также нормальное физиологическое состояние корковых и подкорковых структур, образующих центральное представительство соответствующего условного и безусловного стимулов, отсутствие сильных посторонних раздражителей, отсутствие значительных патологических процессов в организме.

При соблюдении указанных условий практически на любой стимул можно выработать условный рефлекс.

Несмотря на определенные индивидуальные различия, условные рефлексы характеризуются следующими общими свойствами (признаками):

1. Все условные рефлексы представляют собой одну из форм приспособительных реакций организма к меняющимся условиям среды.

2. Условные рефлексы относятся к категории приобретаемых в ходе индивидуальной жизни рефлекторных реакций и отличаются индивидуальной специфичностью.

3. Все виды условно-рефлекторной деятельности носят сигнальный предупредительный характер.

4. Условно-рефлекторные реакции образуются на базе безусловных рефлексов; без подкрепления условные рефлексы со временем ослабляются, подавляются.

Механизм формирования условных рефлексов.

При действии индифферентного раздражителя возникает возбуждение в соответствующих рецепторах, и импульсы из них поступают в мозговой отдел анализатора. При воздействии безусловного раздражителя возникает специфическое возбуждение соответствующих рецепторов, и импульсы через подкорковые центры идут в кору головного мозга (корковое представительство центра безусловного рефлекса, которое является доминантным очагом). Таким образом, в коре головного мозга одновременно возникают два очага возбуждения: В коре головного мозга между двумя очагами возбуждения по принципу доминанты, образуется временная рефлекторная связь. При возникновении временной связи изолированное действие условного раздражителя вызывает безусловную реакцию. В соответствии с теорией Павлова, формирование временной рефлекторной связи происходит на уровне коры головного мозга, а в его основе лежит принцип доминанты.

Условные рефлексы первого и высших порядков. Реакции, образуемые на основе безусловных рефлексов, называются условными рефлексами первого порядка, а реакции, вырабатываемые на основе ранее приобретенных условных рефлексов,—условными рефлексами высших порядков (второго, третьего и т. д.). При выработке условных рефлексов высших порядков индифферентный сигнал подкрепляется хорошо упроченными условными раздражителями.

Образование условных рефлексов высших порядков зависит от совершенства организации нервной системы, ее функциональных свойств и биологической значимости безусловного рефлекса, на базе которого выработан условный рефлекс первого порядка.

Биологическое значение условных рефлексов высших порядков состоит в том, что они обеспечивают сигнализацию о предстоящей деятельности при подкреплении не только безусловными, но и условными раздражителями. В связи с этим более быстро и полно происходит развертывание адаптационных реакций организма.

14. В зависимости от природы физиологического механизма, лежащего в основе тормозного эффекта на условно-рефлекторную деятельность организма, различают безусловное (внешнее и запредельное) и условное (внутреннее) торможение условных рефлексов.

Внешнее торможение условного рефлекса возникает под действием другого постороннего условного или безусловного раздражителя. При этом основная причина подавления условного рефлекса не зависит от самого тормозимого рефлекса и не требует специальной выработки. Внешнее торможение наступает при первом предъявлении соответствующего сигнала.

Запредельное торможение условного рефлекса развивается либо при чрезмерно большой силе стимула, либо при низком функциональном состоянии центральной нервной системы, на уровне которого обычные пороговые раздражители приобретают характер чрезмерных, сильных. Запредельное торможение имеет охранительное значение.

Биологический смысл безусловного внешнего торможения условных рефлексов сводится к обеспечению реакции на главный, наиболее важный для организма в данный момент времени, стимул при одновременном угнетении, подавлении реакции на второстепенный стимул, в качестве которого в этом случае выступает условный стимул.

Условное (внутреннее) торможение условного рефлекса носит условный характер и требует специальной выработки. Поскольку развитие тормозного эффекта связано с нейрофизиологическим механизмом образования условного рефлекса, такое торможение относится к категории внутреннего торможения, а проявление этого типа торможения связано с определенными условиями (например, повторное применение условного стимула без подкрепления), такое торможение является и условным.

Биологический смысл внутреннего торможения условных рефлексов состоит в том, что изменившиеся условия внешней среды (прекращение подкрепления условного стимула безусловным) требует соответствующего адаптивного приспособительного изменения в условно-рефлекторном поведении. Условный рефлекс угнетается, подавляется, поскольку перестает быть сигналом, предвещающим появление безусловного стимула.

Различают четыре вида внутреннего торможения: угасание, дифференцировка, условный тормоз, запаздывание.

-Если условный раздражитель предъявляется без подкрепления безусловным, то через некоторое время после изолированного применения условного стимула реакция на него угасает. Такое торможение условного рефлекса называется угасательным (угасание). Угасание условного рефлекса — это временное торможение, угнетение рефлекторной реакции. Оно не означает уничтожение, исчезновение данной рефлекторной реакции. Спустя некоторое время новое предъявление условного стимула без подкрепления его безусловным вначале вновь приводит к проявлению условно-рефлекторной реакции.

-Если у животного или человека с выработанным условным рефлексом на определенную частоту звукового стимула (например, звук метронома с частотой 50 в секунду) близкие по смыслу раздражители (звук метронома с частотой 45 или 55 в секунду) не подкреплять безусловным стимулом, то условно-рефлекторная реакция на последние угнетается, подавляется (первоначально условная реакция наблюдается и на эти частоты звукового раздражения). Такой вид внутреннего (условного) торможения называют дифференцировочным торможением (дифференцировка). Дифференцировочное торможение лежит в основе многих форм обучения, связанных с выработкой тонких навыков.

-Если условный стимул, на который образован условный рефлекс, применяется в комбинации с некоторым другим стимулом и их комбинация не подкрепляется безусловным стимулом, наступает торможение условного рефлекса, вызываемого этим стимулом. Этот вид условного торможения называется условным тормозом.

-Запаздывательное торможение наступает тогда, когда подкрепление условного сигнала безусловным раздражителем осуществляется с большим опозданием (2—3 мин) по отношению к моменту предъявления условного раздражителя.