Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Rozdil_3_5.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.85 Mб
Скачать

Перетворення координат

25. Початок координат перенесено в точку (–2, 3) без зміни напряму осей. Знайти нові координати точки (4, –5).

26. Якими будуть координати точки (– 3, – 1), якщо початок координати перенести в точку (3, – 2), не змінюючи напрямів осей?

27. Рівняння деякої кривої у прямокутній системі координат подається так: . Якого вигляду набере це рівняння, якщо без повороту осей перенести початок координат у точку (2, 3)?

28. Дано дві прямокутні системи координат, відповідні осі яких паралельні одна одній, і координати (2, 5), (– 1, 0), (– 2, – 4) трьох точок у першій системі. Знайти координати двох перших із цих точок у другій системі, знаючи, що (1, 1) — координати третьої.

Нехай полюс О полярної системи збігається з початком прямокутної системи, а полярна вісь збігається з додатно напрямленою віссю абсцис. За цих умов розв’язати задачі 29—31.

29. Знайти прямокутні координати точок, полярні координати яких  і  відомі: 1)  = 3,  = /3; 2)  = 5,  = /4; 3)  = 4,  = /2; 4)  = 2,  = ; 5)  = 2,  = ½; 6)  = 4,  = .

30. Рівняння, записані в полярній системі координат, подати у прямокутних координатах: 1) r = 3cos t; 2) r2sin2 t = a2; 3) r2 = a2cos2 t; 4) r = a(1 + cos t); 5) r2cos2 t = a2.

31. Рівняння, записані у прямокутній системі координат, подати в полярних координатах: 1) ; 2) ; 3)  ; 4)  ; 5) .

Мішані задачі на площині

32. Знайти рівняння прямої, яка проходить через точку (– 2, 1) і нахилена під кутом 30 до прямої х – 2у = 3.

33. Скласти рівняння прямої, що утворює кут 45 із прямою 3х + у – 2 = 0 та проходить через точку перетину цієї прямої з віссю ординат.

34. На прямій 3х – 3у – 7 = 0 знайти точку, рівновіддалену від точок (3, – 4) і (7, 2).

35. На прямій 2у – 3х = 5 узято відрізок, кінці якого мають абсциси –1 і 5, а на прямій 3у + 4х =2 — відрізок, кінці якого мають ординати – 2 і 6. На кожному із цих відрізків побудовано по рівнобедреному трикутнику, що мають спільну вершину. Знайти координати цієї вершини.

36. Знайти рівняння прямої, що сполучає основи перпендикулярів, опущених із початку координат на прямі і .

37. Дано прямі і . Записати рівняння перпендикулярів до кожної із цих прямих у точці їх перетину.

38. Дві непаралельні сторони паралелограма подаються рівняннями і , а його діагоналі перетинаються в точці (5, 5). Знайти рівняння двох інших його сторін.

39. Визначити координати точки, віддаленої від прямої на відстані, що дорівнює 5, і рівновіддаленої від точок (3, – 2) і (– 5, 4).

40. Знайти рівняння прямої, яка проходить через точку (12, 4), коли відомо, що різниця відстаней цієї прямої від точок (8, – 9) і (– 7, 7) дорівнює 9.

41. Сторони трикутника подаються рівняннями , і . На першій стороні знайти координати точки, рівновіддаленої від двох інших сторін.

42. Вершинами трикутника є точки А (1, 2), В (– 1, 1) і С(–2, 3). Знайти рівняння перпендикуляра, поставленого із середини сторони АС, і точку перетину його з прямою, що проходить через вершину А паралельно стороні ВС.

43. Знайти рівняння бісектриси кута, утвореного прямими і .

44. Діагоналі ромба дорівнюють 8 і 15. Приймаючи їх за осі координат, знайти відстань між протилежними сторонами.

45. Висота рівнобедреного трикутника дорівнює 12, а основа 10. Узявши ці дві прямі за осі координат, знайти рівняння і довжини перпендикулярів, опущених на бічні сторони із протилежних вершин.

46. Катети прямокутного трикутника дорівнюють 6 і 8. Узявши їх за осі координат, знайти довжини перпендикулярів, опущених із вершин на медіани, проведені до цих катетів.

47. Висоти трикутника, рівняння двох сторін якого і , перетинаються в початку координат. Знайти рівняння третьої його сторони.

48. На прямій знайти точку, що задовольняє таку умову: прямі, проведені через неї з точок (2, 3) і (7, 5), утворюють із даною прямою рівні кути.

49. Через точку М(2, 1) провести пряму так, щоб перпендикуляри, опущені на неї з точок А(5, 2) і В(7, 5), були рівні між собою.

50. Із точки, узятої на прямій , проведено дві взаємно перпендикулярні прямі. Знайти рівняння цих прямих, якщо одна з них проходить через точку (– 3, – 3), а друга — через точку (4, 6).

51. Координати кінців однієї зі сторін квадрата: (–3, –3) і (5, 3). Знайти рівняння його сторін.

52. Координати кінців однієї діагоналі квадрата: (– 1, 3) і (3, 1). Знайти рівняння його діагоналей і сторін.

53. Сторона квадрата, одна з вершин якого міститься в початку координат, дорівнює а й утворює кут  із віссю абсцис. Записати рівняння сторін і діагоналей цього квадрата.

54. Дві паралельні сторони ромба подаються рівняннями і , а одна з діагоналей — рівнянням . Скласти рівняння двох інших сторін.

55. Дві протилежні вершини ромба містяться в точках А(3, 4) і С(1, – 2). Сторона АВ нахилена до осі абсцис під кутом 45. Знайти рівняння всіх сторін ромба.

56. Точки перетину прямої з осями координат і центр кола є вершинами трикутника. Знайти координати точки перетину двох його медіан і показати, що й третя медіана проходить через цю саму точку.

57. Скласти рівняння дотичної до еліпса , яка відтинає на координатних осях рівні відрізки.

58. Дано еліпс . Знайти рівняння дотичної до нього, паралельної прямій .

59. Знайти рівняння еліпса, осі якого паралельні осям координат, коли відомі рівняння дотичних до нього прямих: і .

60. З точки (10, 9) проведено дотичні до конічного перерізу . Знайти: 1) рівняння хорди, що сполучає точки дотику; 2) рівняння зазначених дотичних; 3) площу трикутника, який визначається цими прямими.

61. Дано координати вершин трикутника А (1, 2), В (– 1, 1) і С (– 2, 3). Знайти рівняння перпендикуляра, поставленого із середини сторони АС, і точку перетину його з прямою, що проходить через вершину А паралельно стороні ВС.

62. Знайти площу чотирикутника, вершинами якого є центри двох кіл і , а також точки їх перетину.

63. До еліпса і кола проведено спільну дотичну в першому квадранті. Під яким кутом цю дотичну видно з початку координат? Виконати обчислення при ; .

64. З точки М (5, 3) до еліпса проведено дві дотичні. Скласти рівняння перпендикуляра, опущеного з точки М на пряму, яка сполучає точки дотику.

65. До лінії проведено нормаль, що перпендикулярна до прямої . Знайти відстань від центра кривої до цієї нормалі.

66. До лінії проведено дотичну паралельно прямій . Знайти кут, утворений цією дотичною з діаметром, проведеним через точку дотику.

67. Скласти рівняння дотичної до еліпса , якщо діаметр, який проходить через точку дотику, паралельний прямій .

68. З точки (1, 2) проведено дотичні до еліпса . Знайти відстань від даної точки до прямої, що сполучає точки дотику, і обчислити площу трикутника, вершинами якого є дана точка і точки дотику.

69. Через точки перетину кіл і провести нове коло так, щоб центр його лежав на прямій .

70. Через фокус F параболи проведено пряму з кутовим коефіцієнтом , яка перетинає директрису параболи в точці N. Знайти кут між дотичними, проведеними до параболи через точку N, і показати, що хорда, яка сполучає точки дотику, проходить через фокус і перпендикулярна до прямої FN.

71. Фокуси еліпса містяться в точках перетину кіл і , а ексцентриситет дорівнює 0,6. Знайти відстань від кожної з точок перетину директрис із великою віссю еліпса до дотичної, кутовий коефіцієнт якої дорівнює ексцентриситету.

72. Вершина прямого кута трикутника лежить на прямій , а дві інші вершини містяться в точках (2, – 3) і (4, 1). Обчислити площу трикутника.

73. Відрізок прямої є спільною хордою кола та іншого кола, центр якого лежить на осі абсцис. Знайти рівняння другого кола.

74. До кола, яке проходить через точки А(5, 7), В(2, – 2) і С(– 1, 7), із точки D(7, 18) проведено дві дотичні. Визначити площу трикутника, утвореного цими дотичними та прямою, що сполучає точки дотику.

75. У точках перетину еліпса з прямою до нього проведено дві дотичні. Знайти відстань між точками перетину цих дотичних із віссю абсцис, а також відстані правого фокуса еліпса до цих дотичних.

76. Дано канонічний переріз . Знайти рівняння дотичних до цієї кривої, проведених із точки (5, 12), а також рівняння хорди, що сполучає точки дотику.

77. Через фокус параболи проведено пряму під кутом 60 до осі абсцис. У точках перетину цієї прямої з параболою до останньої проведено дотичні. Знайти відстань від точки перетину дотичних до зазначеної прямої і обчислити кут між дотичними.

78. Через дві точки А (1, 3) і В (2, 2) проведено коло із центром на прямій . Знайти відстань від центра цього кола до хорди АВ.

79. З точки перетину прямих і проведено дотичні до еліпса . Знайти рівняння дотичних і довжину відрізка прямої, що сполучає точки дотику.

80. До параболи проведено дотичні з точки, що лежить на її директрисі і має ординату, яка дорівнює 5. Визначити кут, утворений цими дотичними, і показати, що пряма, яка сполучає точки дотику, проходить через фокус параболи.

81. До еліпса проведено дотичні, кутовий коефіцієнт яких дорівнює ексцентриситету еліпса. Знайти відстань між дотичними.

82. Дано коло . Скласти рівняння його дотичної, проведеної паралельно прямій . Знайти точки перетину даного кола з осями координат (виконати відповідний рисунок).

83. З точки (– 4, 6) проведено дотичні до параболи . Визначити відстань від цієї точки до хорди, яка проходить через точки дотику.

84. У точках перетину А та В кола з прямою проведено дотичні. Визначити точку перетину дотичних і показати, що лінія, яка сполучає цю точку з центром даного коло, проходить через середину хорди АВ.

85. До еліпса проведено дві дотичні, паралельні прямій . Визначити відстань між ними і показати, що лінія, яка сполучає точки дотику, проходить через центр еліпса.

86. Через точку (– 4, 2) провести пряму на відстані від точки (7, – 1).

87. Відомо, що ексцентриситет еліпса дорівнює , а відстань між фокусами — 10. Визначити радіуси-вектори точки, абсциса якої додатна, а ордината дорівнює .

88. До еліпса, відстань між директрисами якого становить 18, а ексцентриситет дорівнює , проведено дотичну в його точці (– 1, ). Знайти довжини перпендикулярів, проведених з фокусів еліпса до цієї дотичної.

89. З точки (1, 2) проведено дотичні до еліпса . Знайти рівняння хорди, що сполучає точки дотику, і рівняння кола, побудованого на цій хорді як на діаметрі.

90. З точки А (3, 4) проведено дотичні до еліпса . Знайти рівняння кола, яке проходить через точку А та точки дотику.

91. Знайти до еліпса дотичну, щодо якої виконується умова: різниця довжин перпендикулярів, проведених до неї з фокусів, дорівнює половині відстані між фокусами.

92. Знайти відстань між дотичними до еліпса , паралельними прямій .

93. Дано еліпс . Знайти його дотичні, паралельні прямій, яка сполучає точки перетину кіл і .

94. Дано координати вершин трикутника А(1, 2), В(– 1, 1) і С(–2, 3). Знайти рівняння перпендикуляра, поставленого із середини сторони АС, і точку перетину його з прямою, що проходить через вершину А паралельно стороні ВС.

95. Дано два кола, заданих рівняннями і . Знайти площу чотирикутника, вершинами якого є центр цих кіл і точки їх перетину. Записати рівняння спільної хорди зазначених кіл і довести, що вона перпендикулярна до лінії центрів.

96. Дано два кола, рівняння яких і . До першого з них у точці перетину цих кіл проведено дотичні. Знайти відстань від точки перетину цих дотичних до спільної хорди кіл.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]