
- •Единый государственный экзамен по математике
- •Демонстрационный вариант ким 2006 г.
- •Подготовлен Федеральным государственным научным учреждением
- •«Федеральный институт педагогических измерений»
- •Внимание!
- •Демонстрационный вариант 2006 г. Инструкция по выполнению работы
- •Часть 3 содержит 3 самых сложных задания, два – алгебраических (с3, с5) и одно – геометрическое (с4). При их выполнении надо записать обоснованное решение.
- •Желаем успеха!
- •Часть 1
- •Часть 2
- •Часть 3
- •Ответы к заданиям демонстрационного варианта по математике. Ответы к заданиям с выбором ответа
- •Ответы к заданиям с кратким ответом
- •Ответы к заданиям с развернутым ответом
- •Примечание
Желаем успеха!
Часть 1
При выполнении заданий А1 – А10 в бланке ответов №1 под номером выполняемого задания поставьте знак "" в клеточке, номер которой соответствует номеру выбранного вами ответа. |
A1
.
1) |
36 |
2) |
18 |
3) |
6 |
4) |
12 |
A2
.
1) |
|
2) |
|
3) |
|
4) |
|
A3
.
1) |
10 |
2) |
5 |
3) |
|
4) |
20 |
A4
кажите
множество значений функции, график
которой изображен на рисунке.
1) |
|
2) |
|
3) |
|
4) |
|
A5
.
1) |
|
2) |
|
3) |
|
4) |
|
A6
.
1) |
1 |
2) |
2 |
3) |
0 |
4) |
4 |
A7
На
рисунке изображены графики функций
y = f
(x)
и y = g
(x),
заданных на промежутке
.
Найдите все значения х,
для которых выполняется неравенство
f (x)
≤ g (x).
1) |
|
2) |
|
3) |
|
4) |
|
A8
.
1) |
|
2) |
|
3) |
|
4) |
|
A9
.
1) |
|
2) |
|
3) |
( |
4) |
|
A10
,
в которой угловой коэффициент касательной
равен нулю.
1) |
0 |
2) |
2 |
3) |
– 2 |
4) |
5 |
Ответом на задания В1–В11 должно быть некоторое целое число или число, записанное в виде десятичной дроби. Это число надо записать в бланк ответов №1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус отрицательного числа и запятую в записи десятичной дроби пишите в отдельной клеточке в соответствии с приведенными в бланке образцами. Единицы измерений писать не нужно. |
B1
,
если
.
B2
B3
.
Часть 2
B4
.
B5
ункция
определена на промежутке (– 3; 7).
На рисунке изображен график ее производной.
Найдите точку
,
в которой функция
принимает наибольшее значение.
B6
на отрезке
.
B7
.
В ответе запишите корень уравнения или
сумму корней, если их несколько.
B8
.
Сколько корней имеет уравнение
?
*B9
*B10
и
.
Высота призмы равна 8. Секущая плоскость
проходит через вершину D1
и середины ребер AD и СD. Найдите косинус
угла между плоскостью основания и
плоскостью сечения.
*B11
,
синус угла АВD равен
.
Для записи ответов на задания С1 и С2 используйте бланк ответов №2. Запишите сначала номер выполняемого задания, а затем решение. |
C1
.
C2
и
будут отличаться меньше, чем на 1?