Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие биохимия часть 2.doc
Скачиваний:
0
Добавлен:
30.12.2019
Размер:
6.04 Mб
Скачать

Связь между обменом белков и липидов

Возможно использование продуктов превращения жирных кислот для синтеза заменимых аминокислот. Возникающий при распаде жирных кислот ацетилкоэнзим А вступает в реакцию конденсации с оксалоацетатом и через ЦТК приводит образованию α-кетоглутаровой кислоты. α-Кетоглутаровая кислота в результате аминирования или переаминирования переходит в глутаминовую кислоту. Однако эта возможность синтеза углеродного скелета аминокислот из жирных кислот ограничена. Она исчерпывается синтезом глутаминовой кислоты и требует наличия оксалоацетата, возникающего из других источников (углеводов и белков).

Кроме жирных кислот, в состав нейтральных жиров входит глицерин. Глицерин окисляется в глицериновую кислоту и в дальнейшем превращается в пировиноградную кислоту, а последняя используется для синтеза ряда заменимых аминокислот. Возможность синтеза липидов из белков доказывается и односторонним белковым питанием, которое не вызывает нарушений в обмене.

Путь использования белков для синтеза липидов проходит через образование ацетилкоэнзима А. Ацетилкоэнзим А образуется из всех аминокислот на определённой стадии их окисления. Он может быть использован для синтеза жирных кислот. Глицерин образуется лишь за счёт аминокислот, которые способны превращаться в пируват.

Связь между обменом углеводов и липидов

Молекула триглицерида состоит из глицерина и жирных кислот. Следовательно, из этих составляющих липидов в организме синтезируются углеводы. Глицерин может образовываться из фосфодиоксиацетона или фосфоглицеринового альдегида - нормальных промежуточных продуктов обмена углеводов. Основным исходным материалом для синтеза жирных кислот является ацетилкоэнзим А. Ацетилкоэнзим А образуется в результате окислительного декарбоксилирования пировиноградной кислоты в тканях, а пировиноградная кислота является нормальным продуктом обмена углеводов.

С вопросом о возможности превращения липидов в углеводы дело обстоит сложнее. Если в отношении глицерина такое превращение хорошо известно (фосфорилирование глицерина и окисление глицерофосфата в фосфоглицериновый альдегид – промежуточный метаболит гликолиза), то механизм превращения жирных кислот в углеводы в организме человека в настоящее время дискутируется. В пользу признания возможности синтеза углеводов из липидов говорит тот факт, что во время спячки животных наблюдается резкое снижение дыхательного коэффициента (до 0,5). Такое падение дыхательного коэффициента объясняется превращением липидов в углеводы, которое сопровождается поглощением кислорода, так как углеводы содержат больше кислорода, чем липиды.

Помимо прямых переходов метаболитов этих классов веществ друг в друга, существует тесная энергетическая связь, когда энергетические потребности могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других.

Существуют регуляторные механизмы, обеспечивающие как взаимопревращения белков, липидов и углеводов, так и интеграцию энергии. Движущей силой, вероятнее всего, является энергетическое состояние клетки, в частности, отношение АМФ/АТФ. Оно влияет на активность ключевых ферментов гликолиза, ЦТК, синтеза жирных кислот и т.д.

Скорость распада одних питательных веществ и биосинтеза других определяется физиологическим состоянием и потребностями организма в энергии и метаболитах.

Таким образом, обмен веществ имеет ряд реакций, чаще обратимых, которые связывают между собой обмен белков, липидов и углеводов в единый процесс.

Благодаря обмену веществ клетки в организме функционируют с наименьшей затратой энергии и веществ. Это осуществляется в результате сбалансированной работы регуляторных систем внутриклеточного метаболизма, таких как внутриклеточная, гормональная и нервная регуляция.