
- •С.В. Васильев, в.И. Недолугов основы измерений физических величин
- •Введение
- •Глава 1. Основы метрологии и измерительной техники
- •1.1. Измерение
- •1.1.1. Физическая величина
- •1.1.2. Виды средств измерений
- •1.1.3. Виды и методы измерений
- •1.2. Единство измерений
- •1.2.1. Единицы физических величин
- •1.2.2. Стандартизация
- •1.2.3. Эталоны
- •1.3. Точность измерений
- •1.3.1. Погрешность результата измерения
- •1.3.2. Погрешности средств измерений
- •1.3,3. Классы точности средств измерений
- •1.3.4. Основная и дополнительная погрешности
- •1.3.5. Методическая погрешность
- •1.3.6. Погрешность взаимодействия
- •1.3.7. Динамическая погрешность
- •1.3.8. Субъективная погрешность
- •1.4. Обработка результатов измерений
- •1.4.1. Обработка прямых измерений
- •1.4.2. Многократные прямые измерения
- •1.4.3. Обработка косвенных измерений
- •1.4.4. Расчет погрешности результата косвенного измерения
- •Глава 2. Аналоговые электроизмерительные приборы
- •2.1. Общие сведения
- •2.2. Электромеханические измерительные приборы
- •2.2.1. Приборы магнитоэлектрической системы
- •2.2.2. Приборы выпрямительной системы
- •2.2.3. Приборы термоэлектрической системы
- •2.2.4. Приборы электромагнитной системы
- •2.2.5. Приборы электродинамической системы
- •2.2.6. Электростатические вольтметры
- •2.2.7. Приборы индукционной системы
- •2.3. Электронные измерительные приборы
- •2.3.1. Электронные вольтметры переменного напряжения
- •2.3.2. Выпрямители (детекторы)
- •2.3.3. Особенности электронных измерительных приборов
- •2.4. Влияние формы сигнала на показания приборов
- •2.4.1. Сигнал без постоянной составляющей
- •2.4.2. Сигнал сумма переменной и постоянной составляющих
- •Глава 3. Электронно-лучевой осциллограф
- •3.1. Устройство электронно-лучевого осциллографа
- •3.1.1. Каналы вертикального и горизонтального отклонения
- •3.1.2. Электронно-лучевая трубка
- •3.1.3. Двухканальные электронно-лучевые осциллографы
- •3.2. Формирование изображений на экране электронно-лучевой трубки
- •3.2.1. Режим линейной развертки (режим y – t )
- •3.2.2. Режим y – X
- •3.2.3. Растровый режим (режим y – X – z)
- •3.3. Метрологий осциллографических измерений
- •3.3.1. Инструментальная погрешность
- •3.3.2. Погрешность взаимодействия
- •3.3.3. Субъективная погрешность
- •Глава 4. Аналоговые методы и средства регистрации
- •4.1. Общие сведения
- •4.2. Самопишущие приборы
- •1 Постоянным магнит; 2 ось; 3 катушка; 4 перо; 5 двигатель;
- •6 Бумага; 7 стрелка; 8 шкала
- •4.3. Светолучевые осциллографы
- •1 Источник света; 2 конденсор; 3 диафрагма; 4 зеркало; 5 постоянны
- •9 Зеркальный многогранник; 10 матовый экран
- •4.4. Измерительные магнитографы
- •4.5. Аналоговые запоминающие осциллографы
- •4.6. Сравнение возможностей аналоговых регистраторов
- •Глава 5. Цифровые измерительные приборы
- •5.1. Цифровые методы и средства измерений
- •5.1.1. Характеристики аналого-цифровых преобразователей
- •5.1.2. Методы аналого-цифрового преобразования
- •5.2. Цифровые частотомеры
- •5.2.1. Режим измерения частоты
- •5.2.2. Режим измерения периода
- •5.3. Цифровые вольтметры и мультиметры
- •5.3.1. Структура цифрового вольтметра
- •5.3.2. Структура цифрового мультиметра
- •5.4. Особенности выбора приборов
- •5.4.1. Выбор приборов по метрологическим характеристикам
- •5.4.2. Выбор диапазона измерения
- •Глава 6. Цифровая регистрация и анализ сигналов
- •6.1. Общие сведения
- •6.2. Цифровая измерительная регистрация
- •6.2.1. Устройство цифрового измерительного регистратора
- •6.2.2. Дискретизация, квантование и восстановление сигнала
- •6.2.3. Задание интервала регистрации
- •6.3. Цифровой анализ сигналов
- •6.3.1. Области анализа
- •6.3.2. Анализ во временной области
- •6.3.3. Анализ в частотной (спектральной) области
- •6.3.4. Вычисление параметров электропотребления
- •6.4. Характеристики типичных регистраторов/анализаторов
- •6.4.1. Регистраторы/анализаторы параметров электропотребления
- •6.4.2. Мини-логгеры
- •6.4.3. Компьютерные средства регистрации и анализа
- •Глава 7. Электрические измерения неэлектрических величин
- •7.1. Измерение температуры
- •7.1.1. Контактные методы и средства измерений
- •7.1.2. Бесконтактные методы и средства измерений
- •7.2. Измерение давления
- •7.2.1. Средства измерения давления
- •7.3. Измерение скорости движения потока вещества и его расхода
- •7.3.1. Основные понятия
- •7.3.2. Методы и средства измерения
- •Рекомендуемая литературы
- •Оглавление
- •Глава 1. Основы метрологии измерительной техники...…………………………………………………5
- •Глава 2. Аналоговые электроизмерительные приборы……………………………………...…………..35
- •Глава 3. Электронно-лучевой осциллограф……….70
- •Глава 4. Аналоговые методы и средства регистрации……………………………………….90
- •Глава 5. Цифровые измерительные приборы…………………103
- •Глава 6. Цифровая регистрация и анализ сигналов………………………………...…………..128
- •Глава 7. Электрические измерения неэлектрических величин…………………………………………..…..150
1.3.2. Погрешности средств измерений
Как правило (и обычно в грамотно организованных экспериментах), определяющей составляющей в суммарной погрешности результата измерения является погрешность собственно СИ, т.е. инструментальная погрешность. В свою очередь эта составляющая может быть классифицирована так, как показано на рис. 5. Некоторые классификационные признаки являются общими и для погрешности результата измерения, и для погрешности СИ. Специфические погрешности, характерные именно для средств измерений, выделены на рис. 4 фоном.
По первому классификационному признаку (способу выражения) погрешности СИ делят на абсолютные, относительные и приведенные. Приведенная погрешность γ – отношение абсолютной погрешности Δ к нормирующему значению Хн (часто это верхний предел диапазона измерения) прибора, выраженное в процентах.
Основная погрешность имеет место в нормальных условиях эксплуатации СИ (в частности, прибора), т.е. когда значения всех влияющих величин находятся в пределах заранее оговоренных диапазонов. Дополнительная погрешность возникает при изменении влияющих величин (например, температуры окружающей среды) за пределы нормальных значений.
Рис. 4. Упрощенная классификация погрешностей средств измерений
Статическая погрешность СИ (прибора) – погрешность при измерении значения постоянной (или очень медленно меняющейся) величины, т.е. в случае статических измерений (при использовании статической модели объекта исследования).
Динамическая погрешность возникает при исследовании достаточно быстро меняющейся во времени величины (точнее информативного параметра измеряемой величины). Например, если действующее значение (в данном случае информативный параметр) переменного напряжения электрической сети неизменно и измеряется щитовым электромагнитным вольтметром, то будет иметь место только статическая погрешность, хотя сама входная величина (напряжение – функция времени) меняется с частотой около 50 Гц.
1.3,3. Классы точности средств измерений
Класс точности – это обобщенная метрологическая характеристика СИ, определяемая предельными значениями допустимых основной и дополнительных погрешностей.
Классы точности раз личных СИ могут задаваться по-разному в соответствии с ГОСТ 8.401–80. «Классы точности средств измерений. Общие требования». Настоящий стандарт устанавливает деление СИ по классам точности, способы нормирования метрологических характеристик, комплекс требований к которым зависит от класса точности СИ, а также – обозначения классов точности.
Пределы допустимых погрешностей СИ выражаются в форме абсолютной, относительной и приведенной погрешностей (табл. 2).
Если погрешность СИ носит аддитивный характер, то класс точности задается пределом основной абсолютной или приведенной погрешностей (варианты 1 и 2 в табл. 2). Если погрешность СИ носит мультипликативный характер, то класс точности задается пределом основной относительной погрешностей (вариант 3 в табл. 2). Если же погрешность имеет как аддитивную, так и мультипликативную составляющие, то класс точности может задаваться пределом абсолютной погрешности (вариант 4 в табл. 2) или пределом основной относительной погрешности (вариант 5 в табл2).
Классы точности простых измерительных приборов невысокой точности, например, щитовых стрелочных вольтметров, задаются пределом основной приведенной погрешности (вариант 2 из табл. 2). Для самопишущих приборов характерным является задание класса точности пределом основной относительной погрешности (вариант 3 из табл. 2). Для СИ средней и высокой точности применяются варианты 4 и 5 из табл. 2. Например, для мостов, компенсаторов, цифровых измерительных приборов, как правило, используется вариант 5 из табл. 2. Наиболее распространенной во всем мире (и одновременно наиболее понятной) формой задания погрешностей для современных цифровых СИ является вариант 4 из табл. 2.
Таблица 2
Формы задания классов точности
Вариант |
Форма представления |
Формула |
1 |
Предел основной абсолютной погрешности |
Δп = ±а |
2 |
Предел основной приведенной погрешности, % |
γп = Δ/Хн ·100 = ± р |
3 |
Предел основной относительной погрешности, % |
δп= Δ/ХД ·100 = ± q |
4 |
Предел основной абсолютной погрешности |
Δп = ±(а + bХ) |
5 |
Предел основной относительной погрешности |
δп = ±[c + d (Xк /X –1)] |
При этом предел основной абсолютной погрешности Δп содержит и аддитивную (±а), и мультипликативную (±bХ) составляющие:
Δп = ±(a + bX),
где X– значение измеряемой величины; а и b – постоянные коэффициенты.
Форма задания класса точности пределом абсолютной погрешности, содержащей аддитивную и мультипликативную составляющие, может иметь несколько вариантов записи. Например, класс точности цифрового термометра может быть задан следующим образом:
Δп = ±(0,5 % результата + 2 единицы МЗР),
где МЗР – младший значащий разряд.
Здесь первое слагаемое – это мультипликативная погрешность, а второе – аддитивная.
Другой пример – цифровой мультиметр в режиме измерения переменных напряжений имеет класс точности, определяемый выражением
Δп = ±(1,0 % результата + 0,5 % диапазона измерения).
Для зарубежной аппаратуры (и для англоязычной литературы) характерна такая форма записи класса точности
Δп =±( аFS +bR),
где FS (Full Scale) – верхнее значение диапазона измерений; R (Reading) – результат измерения (отсчет); a, b – постоянные коэффициенты.