
- •С.В. Васильев, в.И. Недолугов основы измерений физических величин
- •Введение
- •Глава 1. Основы метрологии и измерительной техники
- •1.1. Измерение
- •1.1.1. Физическая величина
- •1.1.2. Виды средств измерений
- •1.1.3. Виды и методы измерений
- •1.2. Единство измерений
- •1.2.1. Единицы физических величин
- •1.2.2. Стандартизация
- •1.2.3. Эталоны
- •1.3. Точность измерений
- •1.3.1. Погрешность результата измерения
- •1.3.2. Погрешности средств измерений
- •1.3,3. Классы точности средств измерений
- •1.3.4. Основная и дополнительная погрешности
- •1.3.5. Методическая погрешность
- •1.3.6. Погрешность взаимодействия
- •1.3.7. Динамическая погрешность
- •1.3.8. Субъективная погрешность
- •1.4. Обработка результатов измерений
- •1.4.1. Обработка прямых измерений
- •1.4.2. Многократные прямые измерения
- •1.4.3. Обработка косвенных измерений
- •1.4.4. Расчет погрешности результата косвенного измерения
- •Глава 2. Аналоговые электроизмерительные приборы
- •2.1. Общие сведения
- •2.2. Электромеханические измерительные приборы
- •2.2.1. Приборы магнитоэлектрической системы
- •2.2.2. Приборы выпрямительной системы
- •2.2.3. Приборы термоэлектрической системы
- •2.2.4. Приборы электромагнитной системы
- •2.2.5. Приборы электродинамической системы
- •2.2.6. Электростатические вольтметры
- •2.2.7. Приборы индукционной системы
- •2.3. Электронные измерительные приборы
- •2.3.1. Электронные вольтметры переменного напряжения
- •2.3.2. Выпрямители (детекторы)
- •2.3.3. Особенности электронных измерительных приборов
- •2.4. Влияние формы сигнала на показания приборов
- •2.4.1. Сигнал без постоянной составляющей
- •2.4.2. Сигнал сумма переменной и постоянной составляющих
- •Глава 3. Электронно-лучевой осциллограф
- •3.1. Устройство электронно-лучевого осциллографа
- •3.1.1. Каналы вертикального и горизонтального отклонения
- •3.1.2. Электронно-лучевая трубка
- •3.1.3. Двухканальные электронно-лучевые осциллографы
- •3.2. Формирование изображений на экране электронно-лучевой трубки
- •3.2.1. Режим линейной развертки (режим y – t )
- •3.2.2. Режим y – X
- •3.2.3. Растровый режим (режим y – X – z)
- •3.3. Метрологий осциллографических измерений
- •3.3.1. Инструментальная погрешность
- •3.3.2. Погрешность взаимодействия
- •3.3.3. Субъективная погрешность
- •Глава 4. Аналоговые методы и средства регистрации
- •4.1. Общие сведения
- •4.2. Самопишущие приборы
- •1 Постоянным магнит; 2 ось; 3 катушка; 4 перо; 5 двигатель;
- •6 Бумага; 7 стрелка; 8 шкала
- •4.3. Светолучевые осциллографы
- •1 Источник света; 2 конденсор; 3 диафрагма; 4 зеркало; 5 постоянны
- •9 Зеркальный многогранник; 10 матовый экран
- •4.4. Измерительные магнитографы
- •4.5. Аналоговые запоминающие осциллографы
- •4.6. Сравнение возможностей аналоговых регистраторов
- •Глава 5. Цифровые измерительные приборы
- •5.1. Цифровые методы и средства измерений
- •5.1.1. Характеристики аналого-цифровых преобразователей
- •5.1.2. Методы аналого-цифрового преобразования
- •5.2. Цифровые частотомеры
- •5.2.1. Режим измерения частоты
- •5.2.2. Режим измерения периода
- •5.3. Цифровые вольтметры и мультиметры
- •5.3.1. Структура цифрового вольтметра
- •5.3.2. Структура цифрового мультиметра
- •5.4. Особенности выбора приборов
- •5.4.1. Выбор приборов по метрологическим характеристикам
- •5.4.2. Выбор диапазона измерения
- •Глава 6. Цифровая регистрация и анализ сигналов
- •6.1. Общие сведения
- •6.2. Цифровая измерительная регистрация
- •6.2.1. Устройство цифрового измерительного регистратора
- •6.2.2. Дискретизация, квантование и восстановление сигнала
- •6.2.3. Задание интервала регистрации
- •6.3. Цифровой анализ сигналов
- •6.3.1. Области анализа
- •6.3.2. Анализ во временной области
- •6.3.3. Анализ в частотной (спектральной) области
- •6.3.4. Вычисление параметров электропотребления
- •6.4. Характеристики типичных регистраторов/анализаторов
- •6.4.1. Регистраторы/анализаторы параметров электропотребления
- •6.4.2. Мини-логгеры
- •6.4.3. Компьютерные средства регистрации и анализа
- •Глава 7. Электрические измерения неэлектрических величин
- •7.1. Измерение температуры
- •7.1.1. Контактные методы и средства измерений
- •7.1.2. Бесконтактные методы и средства измерений
- •7.2. Измерение давления
- •7.2.1. Средства измерения давления
- •7.3. Измерение скорости движения потока вещества и его расхода
- •7.3.1. Основные понятия
- •7.3.2. Методы и средства измерения
- •Рекомендуемая литературы
- •Оглавление
- •Глава 1. Основы метрологии измерительной техники...…………………………………………………5
- •Глава 2. Аналоговые электроизмерительные приборы……………………………………...…………..35
- •Глава 3. Электронно-лучевой осциллограф……….70
- •Глава 4. Аналоговые методы и средства регистрации……………………………………….90
- •Глава 5. Цифровые измерительные приборы…………………103
- •Глава 6. Цифровая регистрация и анализ сигналов………………………………...…………..128
- •Глава 7. Электрические измерения неэлектрических величин…………………………………………..…..150
1.3.7. Динамическая погрешность
Динамическая погрешность – это погрешность СИ, возникающая при измерении изменяющейся в процессе измерений физической величины.
Предположение о статической модели объекта (без имеющихся на то оснований) может привести к большим ошибкам. Инерционность прибора при быстроменяющихся входных сигналах рождает динамическую погрешность результата измерения, а иногда и просто приводит к невозможности определить результат. Например: магнитоэлектрический амперметр не в состоянии зафиксировать кратковременный (длительностью менее 1 с) импульс тока.
На рис. 9 показано возникновение динамической погрешности Δд при протекании через магнитоэлектрический измерительный механизм быстро меняющегося тока. На рис. 9 изображены кривая изменения тока i(t), текущего через механизм, и кривая изменения показаний α(t). Механическая инерционность подвижной части прибора приводит к неизбежному отставанию ее реакции при быстрых изменениях тока. Возникающая при этом динамическая погрешность Δд тем больше, чем выше скорость изменения i(t) и чем больше масса подвижной части.
Рис.9. Динамическая погрешность Рис.10. Косвенное измерение мощности одним прибором
Меняющиеся, исследуемые сигналы могут приводить к значительным погрешностям результатов косвенных измерений вследствие неодновременности выполнения различных исходных прямых измерений. Фактически это тоже динамическая погрешность, но в данном случае она определяется не быстродействием отдельных приборов, а скоростью изменения исследуемых параметров и особенностями организации эксперимента. Несинхронность получения отдельных исходных результатов измерения как следствие выбранного метода (подхода) заставляет относить эту погрешность также и к методической, поскольку она не зависит от характеристик (в частности, классов точности) самих приборов.
Проиллюстрируем природу возникновения этой погрешности на примере косвенного измерения активной мощности в однофазной электрической цепи одним прибором – цифровым мультиметром с токовыми клещами. Поочередно (с некоторой естественной временной задержкой Δt) измеряются текущие действующие значения напряжения U и тока I, а затем вычисляется значение активной мощности Р (рис. 10).
Предположим, что в момент времени t1 измерено действующее значение напряжения U(t1) = 220 В. Затем, скажем через 1 мин, в момент времени t2 этим же прибором измерено действующее значение тока I(t2) = 3,0 А. Далее, по результатам этих исходных прямых измерений вычисляется значение активной мощности (нагрузку считаем чисто активной):
Р = U(t1) I(t2) = 220 · 3,0 = 660 Вт.
Между тем, реальные значения активной мощности РР в моменты времени t1 и t2 были равны, соответственно:
Р(t1) = U(t1) I(t2) = 220 · 3,3 = 726 Вт,
PP(t2) = U(t2) I(t2) = 240 · 3,0 = 720 Вт.
Таким образом, разница между вычисленным (660 Вт) и реальными (726 и 720 Вт) значениями активной мощности в данном случае составляет около 10 %. Причем это без учета инструментальной погрешности прибора, погрешности взаимодействия и др.
Если аналогичная методика используется для оценки мощности в трехфазной электрической цепи, то ошибка может быть значительнее за счет большего общего времени задержки Δ t.